首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Local mechanical responses near single grain boundaries (GBs) of 9.8 mol% Y2O3-stabilized ZrO2 bicrystals, SrTiO3 bicrystal, and Al2O3 polycrystal were investigated by nanoindentation at room temperature to reveal single GB contributions to the mechanical properties. Contrary to the concept of the Hall–Petch strengthening, the hardness showed negligible variations among grain interiors, GB vicinities, and just on GBs in the samples. Importantly, the hardness may be underestimated owing to GB grooving in thermally etched samples. Despite the negligible change in intrinsic hardness, the transmission electron microscopy observation of the ZrO2 specimen under impressions revealed dislocation pileups at GBs. These results suggest that single GBs of oxide ceramics prevented dislocation movement but with limited strengthening contributions. This should correspond to the macroscopic Hall–Petch behaviors in oxide ceramics, where the Hall–Petch coefficients normalized by friction stress are significantly smaller than those in metals.  相似文献   

2.
Titanium-rich (Sr/Ti?=?0.995) strontium titanate (ST) ceramics, air-sintered in a temperature range of 1400–1625?°C, were reported to possess anomalies in the grain growth and analogous anomalies in the grain boundary (GB) conductivity activation energy. However, these two interface-related phenomena, occurring at GBs, could not be associated with each other using a simple “brick-layer” model. In this work we revise the topic and advocate that the deviation from the model comes from the oxygen vacancies localized at GBs of the rapidly-cooled ST ceramics. To verify this, we annealed the ceramics in oxygen and performed their systematic and comparative analysis using impedance spectroscopy. A levelling-off in the GB conductivity activation energy, which increases for ≤1.24?eV, and a four-fold decrease in the GB permittivity are observed after annealing. Thus, we confirm a key role of oxygen vacancies in relation between the grain growth and GB conductivity anomalies of as-sintered Ti-rich ST ceramics.  相似文献   

3.
Uranium dioxide ceramics are widely used as nuclear fuels. Thus, it is important to understand the role of the grain boundaries (GBs) which decisively govern the properties of these polycrystalline materials and subsequently determine their performances. Here, we report a coupled numerical - experimental approach enabling to assess GB energies. Firstly, GB formation energies (γgb) were computed for 34 symmetric tilt GBs in UO2 with molecular dynamics simulations at 1700 K. The surface energies (γS) relative to the respective planes of these GBs were calculated as well. The Herring relation was then used to assess the dihedral angles Ψ of the corresponding GB grooves. Secondly, a UO2 ceramic sample was annealed at 1673 K to obtain GB grooves. The CSL GBs of interest were identified by EBSD and their Ψ angles determined by AFM. Computed and measured Ψ values were found to be very close.  相似文献   

4.
SrTiO3 is a potential electrolyte material for solid-oxide fuel cells due to its high ion conductivity. Grain boundaries (GBs) play an important role in bulk ion conductivity. It has been reported that the resistance of Σ3 GBs is much lower than the general GB in SrTiO3. In order to clarify the conflicting reports on the prevalence of Σ3 GBs in SrTiO3, grain size and GB misorientations in Nb-doped and undoped SrTiO3 have been investigated as a function of annealing time. The observations suggest that the prevalence of both low-angle GBs and Σ3 GBs is strongly correlated to both abnormal grain growth and annealing time. In particular, the Σ3 GB population approaches that predicted by the Mackenzie random distribution when abnormal grain growth dominates.  相似文献   

5.
The oxygen permeability of polycrystalline mullite wafers, serving as a model environmental barrier coating layer on SiC fiber‐reinforced SiC matrix composites, was evaluated at temperatures above 1673 h with an oxygen tracer gas (18O2). Oxygen permeation occurred by grain‐boundary (GB) diffusion of oxygen from the high oxygen partial pressure (high‐Po 2) surface to the low‐Po 2 surface, with simultaneous GB diffusion of aluminum in the opposite direction. This GB interdiffusion of both oxygen and aluminum proceeded without acceleration or retardation, maintaining the Gibbs‐Duhem relationship. Oxygen permeation related to the GB diffusion of silicon was negligibly small compared to that generated by aluminum GB diffusion, resulting in decomposition of the mullite near the low‐Po 2 surface. The GB diffusion coefficients for oxygen in the vicinity of the high‐Po 2 surface were determined directly from the SIMS‐18O line profiles along individual GBs, as assessed from cross sections of the exposed wafer. The coefficients thus obtained were comparable to those determined in the absence of an oxygen potential gradient and those calculated from an oxygen permeation trial under the assumption of nearly ionic conductivity.  相似文献   

6.
Abstract

Central necrosis hampers the formation of highly biofunctional Pseudoislets (PIs), which consist of aggregates of insulin-secreting pancreatic β-cells. Necrosis arises because of a shortage of nutrient and oxygen diffusion to the core of the PIs during culture, especially when PIs exceed >200?µm. This study aimed to generate ‘vents’ by incorporating gelatin beads (GBs) into the center of PIs and to examine if this promotes nutrient and oxygen diffusion by blocking the center for cell residence. In addition, we examined the impact of delivering GBs loaded with anti-necrosis or anti-apoptosis drugs to the center of PIs. The BRIN-BD11 rat pancreatic β-cell line was used to generate PIs by suspension culture. PIs were generated at a seeding density of 32,000 cells/PI and cultured for up to 7?days. GBs of 40?µm diameter were produced from Gelatin A and crosslinked with 5% glutaraldehyde for 6?h. The neat GBs or GBs loaded with 100?ng/mL IL-10, or 5?µg/mL anti-IL-1β were incorporated into PIs. The cell viability of the PIs was assessed using cell counting kit-8 (CCK8) and lactate dehydrogenase (LDH) assays. Glucose-stimulated insulin release (GSIS) from PIs was evaluated after stimulation with 16.7?mM glucose for 20?min. Incorporating IL-10, or anti-IL-1β -loaded GBs to PIs synergistically enhanced cell proliferation and reduced cell death. Importantly, PIs cultured for 1 week following incorporation of cytokine-loaded GBs displayed enhanced biofunctionality in terms of higher GSIS.  相似文献   

7.
It is experimentally demonstrated that the electric field drives the grain-boundary (GB) migration in ceramics, but this has not been interpreted mechanistically. This work develops a phase field model to study the GB migration in alumina (Al2O3) and validate through the comparison with previous experiments. Results show that the GBs move to the small grain domain. Under an electric field in the positive bias direction, GB migration is enhanced, whereas the migration to the small grain domain is inhibited under the electric field in the negative bias direction. The enhancement or inhibition effect becomes more pronounced with increasing the electric field. The high negative bias induces decrease in the GB migration velocity even with the migration direction altering. It is revealed that GB migrations are dominated by the competitive effect between the curvature and electric field driving forces, and an analytical expression of the critical electric field is derived.  相似文献   

8.
The equilibrated structures and shear responses of <001> titanium nitride (TiN) symmetric tilt grain boundaries (GBs) are investigated using molecular dynamics simulation. The equilibrated GBs are only composed of the kite-shaped structures connected with edge dislocation cores. From the shear response analysis of TiN GBs, we find that there exist two major deformation modes, i.e., GB sliding and shear deformation coupled with GB motion (shear-coupling). GB sliding may finally lead to the GB fracture and the shuffling of GB atoms. The shear-coupling could be further divided into the ideal and non-ideal ones. For the ideal shear-coupling, the shear deformation coupling with GB motion can be exactly described by a factor solely dependent on the GB tilt angle. However, it is not if the additional shear deformations caused by GB sliding or vacancy emission occur during the shear-coupling. Based on the geometrical analysis of atomic deformation mechanism in GB, we propose two theoretical coupling factors to describe the shear-coupling with the additional GB shear deformations. In addition, the deformation mode of GBs could be changed by elevating the temperatures and adding vacancies into GBs.  相似文献   

9.
As grain boundary (GB) and GB segregation often have significant impact on various properties of polycrystalline materials, their atomic structures as well as the location of segregated dopant should be intensively investigated. We have thus reported several papers about segregation of Pr (praseodymium) in ZnO (zinc oxide) GBs for case study. In this study, we study the atomic structure of Pr‐doped ZnO [0001]/(130) Σ13 symmetric tilt GB, and the results are compared with that for the (250) GB [Sato et al., Phys. Rev. B, 87,140101 (2013)]. Although atomic arrangements of these GBs can be characterized using the same kinds of structural units (SUs), Pr segregation sites relative to the SU vary with GBs. It is suggested that change in strain distribution for different GBs would cause the variation in the segregation sites and Pr would prefer the Zn site of locally highest tension.  相似文献   

10.
We investigate the ultimate strengths and failure types of asymmetric tilt grain boundaries (GBs) with various tilt angles with the aid of molecular dynamics simulations and analytic theory. The tensile strength of armchair-oriented graphene GBs shows a tendency to increase as the misorientation angle rises, while that of zigzag-oriented graphene GBs non-monotonically increases. The overall strength enhancement and weakening behaviors can be explained by a continuum stress analysis of pentagon–heptagon defects along GBs. Nevertheless, full atomistic analyses are required to predict the exact bonds from which mechanical failure initiate. Two different fracture types are observed in our studies; one with cracks growing along the GB and another with cracks growing away from the GB. Detailed understanding of the atomic arrangement along the GB, in addition to defect density, is necessary to ascertain the ultimate strength and rupture process of GBs.  相似文献   

11.
A quantitative understanding of particle rigid body (RB) motion that inherently accompanies grain boundary (GB) diffusion is highly desirable to understand and control the dynamic interplay between coarsening and densification during solid state sintering. By computer simulation using a multi-phase-field approach, we analyze systematically the roles played by each of these processes at different stages of the shrinkage of the internal pore in a three-particle green body as a function of particle size as well as thermodynamic and kinetic factors of interfaces. We demonstrate that particle RB translation promotes both neck growth, and pore rounding and shrinkage. Moreover, the forces acting at GBs and pulling neighboring particles towards one another dynamically evolve as particles fuse. In contrast, particle RB rotation has no contribution to pore shrinkage. The translational force acting on an individual particle varies with not only its size, but also the number and sizes of its neighboring particles.  相似文献   

12.
We perform molecular dynamics simulations on large-area polycrystalline graphene containing a pre-existing circular notch with focus on the notch effect on tensile strength and failure pattern. Our results show that the failure of polycrystalline graphene becomes notch-sensitive if there is an overlapping of stress concentration zones induced by the notch and grain boundaries (GBs); otherwise, the failure becomes notch-insensitive. More specifically, when the notch diameter is larger than the average grain size, the failure is generally notch-sensitive. However, if the notch size is smaller than the grain size, whether the failure is notch-sensitive or not depends on the notch location. These observations can be well explained by following attributes: (1) Both GBs and circular notch can create stress concentration; (2) The stress concentration created by the notch is generally weaker than that by GBs; and (3) The strength of GBs is weaker than that of the grain interior. Our work provides useful guideline for designing polycrystalline graphene for structure and device applications.  相似文献   

13.
Understanding interactions between externally applied electric fields and the interfacial structures of nanoscale ceramics is important for controlling their functional properties. In ceramic oxides, functional properties are determined by oxygen vacancy concentrations near and within grain-boundary core structures. In this study it is shown that the application of electrostatic fields ranging from 0 to nominally 170 V/cm during diffusion bonding of bicrystals alters the atomic and electronic core structures of (100) twist grain boundaries in SrTiO3. The applied electric field strength affects local oxygen vacancy concentrations and ordering of the oxygen sublattice. Results for this model system indicate that electrostatic fields applied during ceramic manufacturing can be employed as a new processing parameter to tailor defect structure configurations and obtain unprecedented ceramic microstructures. The ability to manipulate interface configurations with electric fields in the absence of any sintering additives may have far reaching implications for tuning polarization and band structures in electroceramics while avoiding effects of often unwanted dopants.  相似文献   

14.
The oxygen permeability of polycrystalline α‐alumina wafers, which served as models for alumina scales on alumina‐forming alloys, under steep oxygen potential gradients () was evaluated at 1873 K. Oxygen permeation occurred by the grain‐boundary (GB) diffusion of oxygen from the higher‐oxygen‐partial‐pressure () surface to the lower‐ surface, along with the simultaneous GB diffusion of aluminum in the opposite direction. The fluxes of oxygen and aluminum at the outflow side of the wafer were significantly larger than at the inflow side. Furthermore, Lu and Hf segregation at the GBs selectively reduced the mobility of oxygen and aluminum, respectively. A wafer with a bilayer structure, in which a Lu‐doped layer was exposed to a lower and an Hf‐doped layer was exposed to a higher , decreased the oxygen permeability. When the sign of was reversed, however, the oxygen permeability of the wafer was comparable to that of a nondoped wafer. Co‐doping with both Lu and Hf markedly increased the oxygen permeation, presumably because the Lu‐stabilized HfO2 particles that were segregated at the GBs acted as extremely fast diffusion paths for oxygen through the large number of oxygen vacancies introduced by the solid solution of Lu in the particles.  相似文献   

15.
The structures of W- and W-Mo-containing high-entropy borides (HEBs) are systematically studied by combining atomic-resolution transmission electron microscopy imaging, electron diffraction, and chemical analysis. We reveal that W or W-Mo addition in HEBs leads to segregation of these elements to the grain boundaries (GBs). In the meantime, W- or W-Mo-rich precipitates also form along the GBs. Crystallographic analysis and atomic-scale imaging show that the GB precipitates in both W- and W-Mo-containing HEBs have a cube-on-cube orientation relationship with the matrix. With further strain analysis, the coherency of the precipitate/matrix interface is validated. Nanoindentation tests show that the simultaneous GB segregation and coherent precipitation, as a supplement to the grain hardening, provide additional hardening of the HEBs. Our work provides an in-depth understanding of the GB segregation and precipitation behaviors of HEBs. It suggests that GB engineering could be potentially used for optimizing the performance of high-entropy ceramics.  相似文献   

16.
Various strategies to improve the dielectric properties of ACu3Ti4O12 (A = Sr, Ca, Ba, Cd, and Na1/2Bi1/2) ceramics have widely been investigated. However, the reduction in the loss tangent (tanδ) is usually accompanied by the decreased dielectric permittivity (ε′), or vice versa. Herein, we report a route to considerably increase ε′ with a simultaneous reduction in tanδ in Ta5+–doped Na1/2Y1/2Cu3Ti4O12 (NYCTO) ceramics. Dense microstructures with segregation of Cu– and Ta–rich phases along the grain boundaries (GBs) and slightly increased mean grain size were observed. The samples prepared via solid-state reaction displayed an increase in ε′ by more than a factor of 3, whereas tanδ was significantly reduced by an order of magnitude. The GB–conduction activation energy and resistance raised due to the segregation of Cu/Ta–rich phases along the GBs, resulting in a decreased tanδ. Concurrently, the grain–conduction activation energy and grain resistance of the NYCTO ceramics were reduced by Ta5+ doping ions owing to the increased Cu+/Cu2+, Cu3+/Cu2+, and Ti3+/Ti4+ ratios, resulting in enhanced interfacial polarization and ε′. The effects of Ta5+ dopant on the giant dielectric response and electrical properties of the grain and GBs were described based on the Maxwell–Wagner polarization at the insulating GB interface, following the internal barrier layer capacitor model.  相似文献   

17.
《Ceramics International》2023,49(20):32478-32489
The effect of segregation behavior of non-metallic dopants (H/He/O) and metallic dopants (Be/Al/Mg/Y) on the performance of grain boundary (GB) in SiC has been systematically investigated by first-principles calculations. Firstly, the GB energy and excess volume of different GBs have been studied to evaluate the stability of GB and the capacity to accommodate dopant atoms. The solution energies of dopant atoms greatly reduce in the GB region compared with those in the bulk, which makes the dopant atoms inside the grain tend to segregate and aggregate near the GB. The driving force of GB on dopant segregation generally decreases with the increase of distance from GB plane, and the preferential site of dopant is closely correlated with the atomic size of dopant. In addition, H and Y atom possesses the lowest segregation energy at the interstitial and substitutional site near the GB, respectively. Next, the segregation of single dopant induced the changes in the strength and stability of GB have been explored. It is found that non-metallic dopants have the significant embrittlement effects on GB strength. However, the segregation of most metallic dopants could strengthen the GB and Mg atom has the most significant strengthening effect on the GB. The stability of GB can be greatly improved by segregation of Al and Y dopants. Besides, the aggregation of H atoms has the obvious embrittlement effect on the GB. Furthermore, the co-segregation behavior of different dopants has also been explored. Be and Mg dopants have the most significant inhibition effect on the segregation of detrimental impurities H/He/O due to the repulsive interaction between dopant atoms. The present results provide a new insight into the effect of dopant segregation on GB properties and are expected to be a useful guidance for screening the chemical composition and manipulating the performance of SiC-based ceramics.  相似文献   

18.
19.
Molecular dynamics simulations of ultrananocrystalline diamond (UNCD), with random distribution of grain sizes and grain boundaries (GBs), are performed to investigate the effect of grain size and temperature on the mechanical properties and failure mechanisms under tensile loading. Results show that when the grain size of UNCDs decreases from 4.1 nm to 2.26 nm, the Young's modulus decreases from 891 GPa to 840 GPa, while the obtained intrinsic fracture strength, 113 GPa, is insensitive to the grain size. Elastic softening is attributed to the increased volume fraction of amorphous-like atoms. Our analysis reveals that at room temperature, UNCD fails via sliding along a grain boundary with a large shear stress. Such sliding triggers crack initiation at an adjacent triple junction and subsequent propagation along an adjacent grain boundary with a large normal stress. With increasing temperature, a crossover from grain sliding to a direct intergranular fracture is observed. The crossover is caused by a different dependence of GB shear and tensile strength on temperature. The present work provides information that may be useful to the design and optimization of the mechanical properties and failure behavior of UNCDs.  相似文献   

20.
The single crystal solid‐state conversion of fluorapatite‐type Sr5(PO4)3F (Sr‐FAP) has been achieved by spark plasma sintering with the assistance of NaF additive. NaF was determined to act as both a sintering aid and impurity solute along the grain boundaries (GBs), controlling both the space charge and GB migration rate. Postsintering isothermal annealing was performed to examine the effect of DC electric field on grain growth. From the space charge potential determined from impedance spectra measurements, in combination with the theoretical contribution of space charge to grain‐boundary energy reduction, it was concluded that the magnitude of the space charge in Sr‐FAP is temperature dependent. As such, a moderate decrease in polycrystalline GB driving force is the main cause for the increased single crystal migration length that was observed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号