首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
介绍了在海拔4300 m地区对500 kV直线塔模拟塔头导线-塔身空气间隙的操作冲击放电、雷电冲击放电和工频放电特性试验研究,实验得到了塔头空气间隙不同电压的放电特性曲线。根据海拔0 m和海拔4300 m地区的500 kV塔头间隙的试验结果,采用插值法,计算得到了不同海拔地区的塔头空气间隙的放电电压,同时得到了海拔4000~5500 m地区塔头间隙冲击放电电压的海拔校正系数,推荐了适用的海拔校正方法。最后,给出了海拔4000 m以上500 kV输电线路所需的最小空气间隙距离值。  相似文献   

2.
沙尘对电力系统外绝缘电气特性影响分析   总被引:4,自引:2,他引:2  
司马文霞  吴亮  杨庆 《高电压技术》2008,34(1):16-20,52
为了解沙尘对电力系统运行造成的影响,在查阅有关文献的基础上分析了沙尘对空气间隙和绝缘子放电特性的影响,同时在沙尘模拟实验室进行了风沙对间隙击穿电压影响的实验研究。分析和研究表明:在雷电冲击和操作冲击电压作用下,沙尘对空气间隙的冲击放电特性有一定的影响,主要是由于阴极表面上的沙尘引起;沙尘对空气间隙及绝缘子放电特性的影响程度与风速、沙尘的带电量等因素有关。  相似文献   

3.
沙尘天气会威胁高压输变电外绝缘的安全运行,因此有必要加强相关的研究。为此通过建立人工沙尘放电试验平台,开展了沙尘环境下棒–板间隙雷电冲击击穿特性试验,选用石英砂来模拟现实中的沙尘环境,对比分析了不同间隙距离下,沙尘间隙和空气间隙的雷电击穿电压。结果表明:沙尘环境下,间隙的雷电冲击击穿电压会降低,降低幅度最多可达15%。但试验研究发现,存在例外的一小段间隙距离区段,沙尘条件下的负雷电冲击击穿电压反而会升高,升高幅度最多可达20%。对于大间隙,沙尘对放电的影响将随着间隙距离的增大而减弱。对试验结果与现象,应用流注理论、表面光致电离等机理进行了分析。相关结论为沙漠地区输电线路运维提供了参考。  相似文献   

4.
沙尘暴过境产生电荷分离,形成风沙电场,干扰着无线电通讯,并在导线上产生高电位,可能直接导致电力系统外绝缘失效,影响着沙尘环境地区输电的发展。为研究沙尘中大粒径对放电过程的影响,利用石英砂来模拟沙尘暴天气,在测定模拟沙尘的粒径和体积分数的基础上,对比分析了空气与沙尘中的击穿电压、放电路径对沙尘与空气的选择概率,并分析了大沙粒对伏秒特性和放电通道的影响。实验结果表明:1)粒径较大(直径100μm)的沙粒对放电的发展有促进作用,但当粒径2 mm时,这种作用不是很明显;2)粗沙比细沙击穿的平均时间要长,且击穿时间较为分散;3)粗沙中的放电通道相对较宽。经分析认为沙尘表面光电离、沙尘中电场畸变等作用是大沙粒有利于放电发展的主要原因。  相似文献   

5.
750 kV同塔双回输电线路空气间隙放电特性研究   总被引:6,自引:11,他引:6  
陈勇  孟刚  谢梁  万启发  谷定燮 《高电压技术》2008,34(10):2118-2123
为取得我国750 kV同塔双回输电线路的设计依据,结合我国西北电网公司即将建设的750 kV同塔双回输变电线路工程,试验研究了750 kV同塔双回线路真型塔空气间隙操作冲击(含长波前时间)、雷电冲击和工频电压。采用升降法获得了3~7 m距离的杆塔空气间隙操作冲击、雷电冲击放电特性曲线,采用闪络法获得了1~4 m距离杆塔空气间隙的工频放电特性曲线;研究了不同杆塔宽度对放电电压的影响。试验表明,操作冲击和工频放电电压随着杆塔宽度的增大而降低。通过分析提出了不同海拔高度750 kV同塔双回线路相地最小绝缘间隙推荐值,该结果接近IEC等国外类似试验,证明了其可比性和可靠性。  相似文献   

6.
针对近年来频繁发生的风偏事故,分析认为强风及暴雨是使导线—杆塔空气间隙工频放电电压降低的一个重要原因。采用1:1模拟杆塔-导线结构,首次系统地试验研究了雨水、大风及风雨组合对导线—杆塔空气间隙工频放电特性的影响。结果表明降雨、风速、风向、风雨组合都会影响到空气间隙的工频放电特性,在一定条件下会使其放电电压明显降低。研究结果可为恶劣气象条件下输电线路最小间隙距离设计提供技术依据,降低输电线路风偏放电故障及事故率,提高输电线路的安全运行水平。  相似文献   

7.
开关柜内裸露的导体之间易形成各种空气间隙,其工频放电特性对开关柜的绝缘性能有很大的影响。为得到开关柜内不同空气间隙类型在高海拔下的工频放电特性及其影响因素,以40.5 kV开关柜母线室存在的4种典型的空气间隙及棒-板间隙为研究对象,在人工气候实验室进行了海拔232~3000 m下的低气压工频放电特性试验。结果表明:开关柜内不同空气间隙类型的放电电压U明显不同,放电电压U随气压P下降的趋势也不同;在开关柜空气间隙海拔校正时,湿度h对间隙放电电压的影响较小,仅简单考虑气压是可行的;开关柜空气间隙的电场分布比棒-板间隙更不均匀,其放电电压U可能比棒-板间隙更低;此外,开关柜空气间隙在间隙距离d小于400 mm时放电电压U与距离d呈非线性关系。  相似文献   

8.
研究棒-板和棒-棒空气间隙等典型的空气间隙的放电特性和海拔校正,不仅可为高海拔地区输变电工程空气间隙距离的选择提供参考,而且可为更高海拔地区空气间隙放电电压的海拔校正提供依据。为此,在海拔高度为0m、2 200m、3 000m、4 300m和5 000m的地区,对不同间隙距离的棒-板和棒-棒典型长空气间隙进行了标准操作冲击放电特性试验。根据试验结果计算分析了不同海拔地区典型的棒-板和棒-棒间隙的操作冲击放电电压的海拔校正因数。将IEC 60071-2标准中规定的放电电压海拔校正方法适用范围外延至海拔高度5 000m,对棒-板间隙的放电电压的海拔校正因数进行了计算。试验结果表明,随着海拔高度的升高,棒-板和棒-棒间隙的操作冲击放电电压都降低,棒-棒间隙放电电压的降低幅度要大于棒-板间隙。根据IEC 60071-2标准对海拔校正因数的计算结果在海拔高度为2 200m的地区与试验结果基本一致;但随着海拔高度的增加,计算结果与试验结果的差别越来越大:在海拔高度为4 300m和5 000m的地区,间隙距离约为2m时,计算结果比试验结果小10%以上。  相似文献   

9.
《高压电器》2013,(4):66-70
35 kV开关柜母排相间、相对地保证安全的空气距离是在1 000 m以下海拔通过对棒—板间隙的试验得出,棒—板间隙结构与开关柜内部母排结构存在差异,同时高海拔地区大气压力降低,空气间隙放电变得容易,为了得到2 000 m海拔35 kV开关柜的安全净距,文中对开关柜内母排结构进行了分类并设计了模拟试验开关柜,对不同结构母排进行了2 000 m海拔的工频及冲击放电试验。试验通过对不同结构母排施加标准要求的试验电压值,得到相对应的最小不放电距离即安全净距,为2 000 m海拔开关柜的设计、制造提供了参考。  相似文献   

10.
在高海拔地区建立10 kV线路带电作业时所需空气间隙的电气试验模型,并开展工频过电压试验。依据试验结果,采用线性回归等计算分析方法,确定了间隙为0.1 m~0.6 m时,4 000 m及以下不同海拔时工频放电电压U50%的拟合公式及拟合曲线,并对带电作业所需间隙距离的安全裕度、危险率和相应的变化趋势进行了计算和分析。优化了带电作业所需间隙距离的校核方式,突破了采用"海拔修正系数"传统方法指导作业带来的局限,拓展了高海拔地区电网企业提高供电可靠性的途径。  相似文献   

11.
国内的运行经验和研究表明,强降雨条件下输电线路绝缘性能会有一定程度的降低,而实际工程在对外绝缘进行设计时很少考虑降雨的影响;同时,在目前的IEC标准中,对降雨条件下空气间隙放电电压的校正也没有做出相关规定。为此,选择0.2~0.6m的棒-板空气间隙,在人工气候室和雪峰山自然试验站分别进行了模拟和自然条件下的淋雨交流放电试验,分析了淋雨强度对棒-板间隙交流放电电压的影响,提出了淋雨条件下棒-板空气间隙交流放电电压的校正公式并进行了验证。结果表明:棒-板空气间隙交流击穿电压将随淋雨强度的增加而降低,最大降低幅度为10.32%;根据试验数据提出的校正方法不仅适用于0.2~0.6m的间隙,而且还适用于0.7m的空气间隙。  相似文献   

12.
±1000 kV直流在中国是一个新的电压等级,为保证设计的经济性和可靠性,需对不同海拔地区空气间隙距离的选择进行试验研究。在北京的特高压直流试验基地和海拔4 300 m的西藏高海拔试验基地采用相同结构的±1 000 kV真型尺寸模拟塔头空气间隙进行了冲击放电试验,获得了相应的操作冲击和雷电冲击放电特性曲线。通过对西藏基地得到的操作冲击放电电压采用GB/T 16927.1—1997、IEC 60071-2和GB/T 311.1—1997标准推荐的方法进行海拔校正,并与北京的试验基地得到的试验结果进行比较,结果表明以上3种标准推荐的海拔校正方法已不适用于海拔4.3 km的长空气间隙操作冲击放电。最后,按照"海拔每升高100m,绝缘的电气强度降低相同百分比"的原则,采用插值法计算得到了海拔4300m及以下地区的塔头间隙操作冲击放电电压曲线,并结合±1000kV直流输电线路过电压的研究结果,计算了不同海拔下±1000kV直流输电线路塔头操作过电压需要的最小空气间隙距离。在1.7pu操作过电压下,对于海拔1000m及以下地区,±1000kV直流塔头的空气间隙距离建议为8.6m;当海拔为3500m时,建议为9.8m。  相似文献   

13.
为了探明沙尘环境下高速列车车顶绝缘部件闪络机理,依托自建的风洞试验系统进行了沙尘环境下针-板电极间隙击穿试验,通过分析沙尘浓度、风沙速度、间隙距离、沙粒粒径等因素对间隙击穿电压的影响,揭示了高速沙尘环境对间隙放电影响的基本规律。结果表明:间隙击穿电压随沙尘浓度的增加而下降,随间隙距离的增加而增加;有风有沙和有风无沙条件下击穿电压均随着风速的增加呈先上升后下降的趋势,且有风有沙下的击穿电压比有风无沙下的低;随着沙粒粒径的增加,击穿电压先下降后上升,存在极小值。以上研究为沙尘环境中高速列车车顶高压绝缘提供理论基础。  相似文献   

14.
1000 kV线路杆塔空气间隙距离选择   总被引:3,自引:2,他引:3  
特高压(UHV)线路空气间隙距离研究是UHV线路工程设计的基本参数,而前苏联、日本的相关工程参数也与我国情况不同。为此介绍了中国晋南荆1000kV输电线路杆塔空气间隙距离选择的原则、方法和结果。由于塔宽和试验电压波前时间对特高压线路杆塔空气间隙的放电电压有明显的影响,故采用特高压真型杆塔进行空气间隙的放电电压试验,操作冲击试验电压的波前时间为1000μs,和特高压线路操作过电压的实际波前时间比较接近。工作电压下空气间隙距离的选择考虑了最大工作电压、100a一遇的最大风速、多间隙并联对放电电压的影响并取闪络概率为0.13%,得到海拔500、1000、1500m时工作电压下的最小空气间隙距离分别为2.7、2.9、3.1m。操作冲击下空气间隙距离的选择考虑了沿线最大的统计(2%)操作过电压水平为1.7p.u.、操作过电压波前时间取1000μs、多间隙并联对放电电压的影响、计算风速为0.5倍最大风速、闪络概率为0.13%,得到海拔500、1000、1500m时的最小空气间隙距离中相分别为6.7、7.2、7.7m,边相分别为5.9、6.2、6.4m。试验结果表明,边相导线对杆塔的空气间隙距离受工作电压控制,中相导线对杆塔的空气间隙距离受操作冲击电压控制。雷电冲击下的空气间隙距离对杆塔塔头尺寸不起控制作用,可以不规定雷电冲击下的空气间隙距离要求值。  相似文献   

15.
±1100 kV直流是一个新的电压等级,杆塔间隙距离的选择是保证工程可靠和经济的关键技术之一,我国正在建设的±1100 kV输电线路超过3000 km,并且途经高海拔地区,为解决杆塔间隙放电电压的海拔校正问题,在国内两个不同海拔的试验基地,采用±1100 kV真型尺寸模拟杆塔,进行了空气间隙冲击放电试验,获得了相应的操作冲击、雷电冲击放电电压,并分析了不同海拔下操作冲击和雷电冲击放电电压的分散性;其次,利用典型的棒板间隙操作冲击放电公式,分析了间隙距离6~11 m范围的间隙系数;然后,结合IEC 60071-2规定的海拔校正方法,分析了±1100 kV杆塔操作冲击和雷电冲击的海拔校正系数,并计算得到了操作冲击的电压修正因数m。最后结合昌吉—古泉±1100 kV工程的过电压计算结果,推荐了海拔3000 m及以下地区±1100 kV输电线路直流电压和操作冲击电压所需的最小间隙距离。结果表明:未发现海拔的变化对间隙放电电压的相对标准偏差有明显影响,在1.57 pu操作过电压下,海拔1000 m时,±1100 kV输电线路杆塔操作冲击所需的最小间隙距离为8.9 m,海拔为3000 m时,最小间隙距离为9.8 m。直流电压要求的间隙距离较小,海拔3000 m时为4.2 m。  相似文献   

16.
刘庭  胡毅  刘凯  彭勇  肖宾  吴田 《高电压技术》2012,38(12):3261-3267
超高压交流/特高压直流同塔多回输电线路下层500kV交流导线平行处的塔身宽度(简称塔宽)比单一500kV线路铁塔增大1倍以上,同时下层带电作业间隙还存在着上层±800kV直流线路产生的离子流。为此,试验分析了"等电位作业人员-塔身"典型作业工况下,1.4~11.0m不同塔宽下空气间隙的操作冲击放电特性,并开展了0.80~1.25m间隙距离下离子流密度对空气间隙操作冲击放电电压影响的试验研究。研究结果表明,随着塔宽的增大,相等带电作业间隙距离的操作冲击放电电压相应降低;当作业间隙距离为7.5m时,11m塔宽下的操作冲击50%放电电压比1.4m塔宽下降低了约14%;在0~167nA/m2离子流密度范围内的离子流对0.80~1.25m间隙距离的空气间隙操作冲击放电电压无影响。该试验研究结果可以为超高压交流/特高压直流同塔多回输电线路带电作业工作的开展提供技术依据。  相似文献   

17.
《电网技术》2021,45(3):1208-1213
为了验证35 kV线路用自灭弧防雷间隙在继电保护动作前的灭弧有效性,因此对其工频续流遮断能力进行研究。对自灭弧防雷间隙进行灭弧机理分析,明确其多断口灭弧结构的性能。依照国家标准中雷电冲击放电试验和空气间隙距离的规定进行试验,确定其击穿放电电压应大于325.1 kV,空气间隙距离约376mm,额定电压为40.5kV。根据IEC标准搭建了工频续流遮断试验平台。该试验平台能够产生1.2/50μs的标准雷电冲击电压和10个完整周期且频率为50 Hz左右的工频电压,并具有选相触发能力。工频续流遮断试验结果表明:35 kV自灭弧防雷间隙在1.5 ms附近产生的气流作用于电弧最为强烈,在3 ms内熄灭峰值为1.289 kA的工频续流,且不会发生电弧重燃现象。  相似文献   

18.
在可调节温度、压力、湿度的人工气候试验室内,在工频电压下,对棒一棒,棒一板空气间隙(最长间距为1000毫米)及35千伏、110千伏隔离开关断口间隙,进行了湿度对空气间隙工频放电电压影响的试验研究工作。本文介绍试验方法与试验结果,并简述了数据处理方法,推荐了空气间隙工频放电电压的湿度校正曲线。  相似文献   

19.
空气间隙的操作冲击放电电压是特高压输电工程杆塔设计的关键参数。气象参数、均压环尺寸、导线形式、绝缘子串型、间隙距离、冲击电压波形参数等因素都会对杆塔空气间隙的操作冲击放电电压产生影响。该文基于±500kV~±1100kV的直流杆塔空气间隙的操作冲击放电电压数据,建立灰狼算法优化的Ada Boost-SVR预测模型。该模型以均压环尺寸、塔身宽度、间隙距离、空气温度、气压和相对湿度作为输入参数,杆塔空气间隙的50%放电电压(U_(50))作为输出参数。采用该文提出的模型,对不同均压环尺寸下的杆塔空气间隙的U_(50)进行计算分析。结果表明,采用上述模型的预测值与试验值基本吻合。最后,采用该预测模型计算了典型气象条件下的±1100k V和±800kV杆塔间隙的U50。该方法可以计算不同气象条件下(包括不同于样本的气象条件)杆塔间隙的50%操作冲击放电电压,为输变电工程空气间隙操作冲击放电电压的预测提供了一种新的思路。  相似文献   

20.
风沙对电力系统外绝缘放电的影响已引起广泛关注,由于污秽绝缘子的闪络与沉积在绝缘子表面的污秽性质有关,沙尘环境下的沙粒性质、状态、大气环境等均对绝缘子闪络特性有影响。因此以典型的平板模型为研究对象,在沙尘模拟实验室,对沙尘环境下外绝缘沿面工频放电特性进行了试验研究和机制分析。得到了风沙速度、风沙带电量、沙粒沉积量及沙粒含水量等因素对沿面放电的影响规律;在有风有沙和有风无沙时,平板模型沿面闪络电压Uf随风速的增大而增大,当风速达到4.5m/s后增大趋势变缓;Uf受沙尘的电荷量影响较小;当干沙粒沉积在绝缘表面时,随着沉积密度的增加,Uf存在着极小值;同时,平板模型的闪络电压还与沉积沙粒的含水量有关。在此基础上分析了风沙环境下绝缘子的沿面闪络过程和放电机制,得出了无沙区域在沿面闪络过程中起重要影响这一结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号