首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exponential estimates and sufficient conditions for the exponential synchronization of complex dynamical networks with bounded time-varying delays are given in terms of linear matrix inequalities (LMIs). A generalized complex networks model involving both neutral delays and retarded ones is presented. The exponential synchronization problem of the complex networks is converted equivalently into the exponential stability problem of a group of uncorrelated delay functional differential equations with mixed timevarying delays. By utilizing the free weighting matrix technique, a less conservative delay-dependent synchronization criterion is derived. An illustrative example is provided to demonstrate the effectiveness of the proposed method.  相似文献   

2.
Parallelizing compilers have made great progress in recent years.However,there still remains a gap between the current ability of parallelizing compilers and their final goals.In order to achieve the maximum,parallelism,run-time techniques were used in parallelizing compilers during last few years.First,this paper presents a basic run-time prviation method.The definition of run-time dead code,backward data-flow information must be used.Proteus Test,which can use backward information in run-time,is then presented to exploit more dynamic parallelism.Also.a variation of Protus Test,the Advanced Proteus Test,is offered to achieve partial parallelism.Proteus Test was implemented on the parallelizing compiler AFT.In the end of this paper the program fppp.f of Spec95fp Benchmark is taken as an example,to show the effectiveness of Proteus Test.  相似文献   

3.
Tracking clusters in evolving data streams over sliding windows   总被引:6,自引:4,他引:2  
Mining data streams poses great challenges due to the limited memory availability and real-time query response requirement. Clustering an evolving data stream is especially interesting because it captures not only the changing distribution of clusters but also the evolving behaviors of individual clusters. In this paper, we present a novel method for tracking the evolution of clusters over sliding windows. In our SWClustering algorithm, we combine the exponential histogram with the temporal cluster features, propose a novel data structure, the Exponential Histogram of Cluster Features (EHCF). The exponential histogram is used to handle the in-cluster evolution, and the temporal cluster features represent the change of the cluster distribution. Our approach has several advantages over existing methods: (1) the quality of the clusters is improved because the EHCF captures the distribution of recent records precisely; (2) compared with previous methods, the mechanism employed to adaptively maintain the in-cluster synopsis can track the cluster evolution better, while consuming much less memory; (3) the EHCF provides a flexible framework for analyzing the cluster evolution and tracking a specific cluster efficiently without interfering with other clusters, thus reducing the consumption of computing resources for data stream clustering. Both the theoretical analysis and extensive experiments show the effectiveness and efficiency of the proposed method. Aoying Zhou is currently a Professor in Computer Science at Fudan University, Shanghai, P.R. China. He won his Bachelor and Master degrees in Computer Science from Sichuan University in Chengdu, Sichuan, P.R. China in 1985 and 1988, respectively, and Ph.D. degree from Fudan University in 1993. He served as the member or chair of program committee for many international conferences such as WWW, SIGMOD, VLDB, EDBT, ICDCS, ER, DASFAA, PAKDD, WAIM, and etc. His papers have been published in ACM SIGMOD, VLDB, ICDE, and several other international journals. His research interests include Data mining and knowledge discovery, XML data management, Web mining and searching, data stream analysis and processing, peer-to-peer computing. Feng Cao is currently an R&D engineer in IBM China Research Laboratories. He received a B.E. degree from Xi'an Jiao Tong University, Xi'an, P.R. China, in 2000 and an M.E. degree from Huazhong University of Science and Technology, Wuhan, P.R. China, in 2003. From October 2004 to March 2005, he worked in Fudan-NUS Competency Center for Peer-to-Peer Computing, Singapore. In 2006, he received his Ph.D. degree from Fudan University, Shanghai, P.R. China. His current research interests include data mining and data stream. Weining Qian is currently an Assistant Professor in computer science at Fudan University, Shanghai, P.R. China. He received his M.S. and Ph.D. degree in computer science from Fudan University in 2001 and 2004, respectively. He is supported by Shanghai Rising-Star Program under Grant No. 04QMX1404 and National Natural Science Foundation of China (NSFC) under Grant No. 60673134. He served as the program committee member of several international conferences, including DASFAA 2006, 2007 and 2008, APWeb/WAIM 2007, INFOSCALE 2007, and ECDM 2007. His papers have been published in ICDE, SIAM DM, and CIKM. His research interests include data stream query processing and mining, and large-scale distributed computing for database applications. Cheqing Jin is currently an Assistant Professor in Computer Science at East China University of Science and Technology. He received his Bachelor and Master degrees in Computer Science from Zhejiang University in Hangzhou, P.R. China in 1999 and 2002, respectively, and the Ph.D. degree from Fudan University, Shanghai, P.R. China. He worked as a Research Assistant at E-business Technology Institute, the Hong Kong University from December 2003 to May 2004. His current research interests include data mining and data stream.  相似文献   

4.
This paper investigates a preemptive semi-online scheduling problem on m identical parallel machines where m = 2,3. It is assumed that all jobs have their processing times in between p and rp (p > 0, r≥1). The goal is to minimize the makespan. Best possible algorithms are designed for any r≥1 when m = 2,3.  相似文献   

5.
Mobility management is a challenging topic in mobile computing environment. Studying the situation of mobiles crossing the boundaries of location areas is significant for evaluating the costs and performances of various location management strategies. Hitherto, several formulae were derived to describe the probability of the number of location areas‘ boundaries crossed by a mobile. Some of them were widely used in analyzing the costs and performances of mobility management strategies. Utilizing the density evolution method of vector Markov processes, we propose a general probability formula of the number of location areas‘ boundaries crossed by a mobile between two successive calls. Fortunately, several widely-used formulae are special cases of the proposed formula.  相似文献   

6.
ARMiner: A Data Mining Tool Based on Association Rules   总被引:3,自引:0,他引:3       下载免费PDF全文
In this paper,ARM iner,a data mining tool based on association rules,is introduced.Beginning with the system architecture,the characteristics and functions are discussed in details,including data transfer,concept hierarchy generalization,mining rules with negative items and the re-development of the system.An example of the tool‘s application is also shown.Finally,Some issues for future research are presented.  相似文献   

7.
The study on database technologies, or more generally, the technologies of data and information management, is an important and active research field. Recently, many exciting results have been reported. In this fast growing field, Chinese researchers play more and more active roles. Research papers from Chinese scholars, both in China and abroad,appear in prestigious academic forums.In this paper,we, nine young Chinese researchers working in the United States, present concise surveys and report our recent progress on the selected fields that we are working on.Although the paper covers only a small number of topics and the selection of the topics is far from balanced, we hope that such an effort would attract more and more researchers,especially those in China,to enter the frontiers of database research and promote collaborations. For the obvious reason, the authors are listed alphabetically, while the sections are arranged in the order of the author list.  相似文献   

8.
A directional filter algorithm for intensity synthetic aperture radar (SAR) image based on nonsubsampled contourlet transform (NSCT) and immune clonal selection (ICS) is presented. The proposed filter mainly focuses on exploiting different features of edges and noises by NSCT. Furthermore, ICS strategy is introduced to optimize threshold parameter and amplify parameter adaptively. Numerical experiments on real SAR images show that there are improvements in both visual effects and objective indexes.  相似文献   

9.
A Novel Computer Architecture to Prevent Destruction by Viruses   总被引:1,自引:0,他引:1       下载免费PDF全文
In today‘s Internet computing world,illegal activities by crackers pose a serious threat to computer security.It is well known that computer viruses,Trojan horses and other intrusive programs may cause sever and often catastrophic consequences. This paper proposes a novel secure computer architecture based on security-code.Every instruction/data word is added with a security-code denoting its security level.External programs and data are automatically addoed with security-code by hadware when entering a computer system.Instruction with lower security-code cannot run or process instruction/data with higher security level.Security-code cannot be modified by normal instruction.With minor hardware overhead,then new architecture can effectively protect the main computer system from destruction or theft by intrusive programs such as computer viruses.For most PC systems it includes an increase of word-length by 1 bit on register,the memory and the hard disk.  相似文献   

10.
Symmetric π-Calculus   总被引:2,自引:0,他引:2       下载免费PDF全文
An alternative presentation of the π-calculus is given.This version of the π-calculus is symmetric in the sense that communications are symmetric and there is no difference between input and output prefixes.The point of the symmetric π-calculus is that it has no abstract names.The set of closed names is therefore homogeneous.The π-calculus can be fully embedded into the symmetric π-calculus.The symmetry changes the emphasis of the communication mechanism of the π-calculus and opens up possibility for further variations.  相似文献   

11.
Peer-to-peer grid computing is an attractive computing paradigm for high throughput applications. However, both volatility due to the autonomy of volunteers (i.e., resource providers) and the heterogeneous properties of volunteers are challenging problems in the scheduling procedure. Therefore, it is necessary to develop a scheduling mechanism that adapts to a dynamic peer-to-peer grid computing environment. In this paper, we propose a Mobile Agent based Adaptive Group Scheduling Mechanism (MAAGSM). The MAAGSM classifies and constructs volunteer groups to perform a scheduling mechanism according to the properties of volunteers such as volunteer autonomy failures, volunteer availability, and volunteering service time. In addition, the MAAGSM exploits a mobile agent technology to adaptively conduct various scheduling, fault tolerance, and replication algorithms suitable for each volunteer group. Furthermore, we demonstrate that the MAAGSM improves performance by evaluating the scheduling mechanism in Korea@Home. SungJin Choi is a Ph.D. student in the Department of Computer Science and Engineering at Korea University. His research interests include mobile agent, peer-to-peer computing, grid computing, and distributed systems. Mr. Choi received a M.S. in computer science from Korea University. He is a student member of the IEEE. MaengSoon Baik is a senior research member at the SAMSUNG SDS Research & Develop Center. His research interests include mobile agent, grid computing, server virtualization, storage virtualization, and utility computing. Dr. Baik received a Ph.D. in computer science from Korea University. JoonMin Gil is a professor in the Department of Computer Science Education at Catholic University of Daegu, Korea. His recent research interests include grid computing, distributed and parallel computing, Internet computing, P2P networks, and wireless networks. Dr. Gil received his Ph.D. in computer science from Korea University. He is a member of the IEEE and the IEICE. SoonYoung Jung is a professor in the Department of Computer Science Education at Korea University. His research interests include grid computing, web-based education systems, database systems, knowledge management systems, and mobile computing. Dr. Jung received his Ph.D. in computer science from Korea University. ChongSun Hwang is a professor in the Department of Computer Science and Engineering at Korea University. His research interests include distributed systems, distributed algorithms, and mobile computing. Dr. Hwang received a Ph.D. in statistics and computer science from the University of Georgia.  相似文献   

12.
In this paper we propose a novel method for building animation model of real human body from surface scanned data. The human model is represented by a triangular mesh and described as a layered geometric model. The model consists of two layers: the control skeleton generating body animation from motion capture data, and the simplified surface model providing an efficient representation of the skin surface shape. The skeleton is generated automatically from surface scanned data using the feature extraction, and then a point-to-line mapping is used to map the surface model onto the underlying skeleton. The resulting model enables real-time and smooth animation by manipulation of the skeleton while maintaining the surface detail. Compared with earlier approach, the principal advantages of our approach are the automated generation of body control skeletons from the scanned data for real-time animation, and the automatic mapping and animation of the captured human surface shape. The human model constructed in this work can be used for applications of ergonomic design,garment CAD, real-time simulating humans in virtual reality environment and so on.  相似文献   

13.
We have developed a high-throughput, compact network switch (the RHiNET-2/SW) for a distributed parallel computing system. Eight pairs of 800-Mbit/s×12-channel optical interconnection modules and a CMOS ASIC switch are integrated on a compact circuit board. To realize high-throughput (64 Gbit/s) and low-latency network, the SW-LSI has a customized high-speed LVDS I/O interface, and a high-speed internal SRAM memory in a 784-pin BGA one-chip package. We have also developed device implementation technologies to overcome the electrical problems (loss and crosstalk) caused by such high integration. The RHiNET-2/SW system enables high-performance parallel processing in a distributed computing environment. Shinji Nishimura: He is a researcher in the Department of Network System at the Central Research Laboratory, Hitachi Ltd., at Tokyo. He obtained his bachelors degree in Electronics Engineering from the University of Tokyo in 1989, and his M.E. from the University of Tokyo in 1991. He joined a member of the Optical Interconnection Hitachi Laboratory from 1992. His research interests are in hardware technology for the optical interconnection technologies in the computer and communication systems. Katsuyoshi Harasawa: He is a Senior Enginner of Hitachi Communication Systems Inc. He obtained his bachelors degree in Electrical Engineering from Tokyo Denki University. He is a chief of development of the devices and systems for the optical telecommunication. He was engaged in Development of Optical Reciever and Transmitter module. He joined RWCP project from 1997. His research interests are in hardward technology for optical interconnection in distributed parallel computing system (RHiNET). Nobuhiro Matsudaira: He is a engineer in the Hitachi Communication Systems, Inc. He obtained his bachelors degree in Mercantile Marine Engineering from the Kobe University of Mercantile Marine in 1986. He was engaged in Development of Optical Reciever and Transmitter module at 2.4 Gbit/s to 10Gbit/s. He joined RWCP project from 1998. His reserch interests are in hardware technology for the optical interconnection technology in the computer and communication systems. Shigeto Akutsu: He is a staff in Hitachi Communication Systems Inc. He obtained his bachelors degree in Electronics from Kanagawa University, Japan in 1998. His research interests are hardware technology for the optical interconnection technology in the computer and communication systems. Tomohiro Kudoh, Ph.D.: He received Ph.D. degree from Keio University, Japan in 1992. He has been chief of the parallel and distributed architecture laboratory, Real World Computing Partnership since 1997. His research interests include the area of parallel processing and network for high performance computing. Hiroaki Nishi: He received B.E., M.E. from Keio University, Japan, in 1994, 1996, respectively. He joined Parallel & Distributed Architecture Laboratory, Real World Computing Partnership in 1999. He is currently working on his Ph.D. His research interests include area of interconnection networks. Hideharu Amano, Ph.D.: He received Ph.D. degree from Keio University, Japan in 1986. He is now an Associate Professor in the Department of Information and Computer Science, Keio University. His research interests include the area of parallel processing and reconfigurable computing.  相似文献   

14.
A Type of Triangular Ball Surface and its Properties   总被引:1,自引:0,他引:1       下载免费PDF全文
A new type of bivariate generalized Ball basis function on a triangle is presented for free-form surface design.Some properties of the basis function are given,then degree elevation,recursive evaluation and some other properties of the generalized Ball surfaces are also derived.It is shown that the proposed recursive evaluation algorithm is more efficient than those of the old surfaces.  相似文献   

15.
Privacy-preserving SVM classification   总被引:2,自引:2,他引:0  
Traditional Data Mining and Knowledge Discovery algorithms assume free access to data, either at a centralized location or in federated form. Increasingly, privacy and security concerns restrict this access, thus derailing data mining projects. What is required is distributed knowledge discovery that is sensitive to this problem. The key is to obtain valid results, while providing guarantees on the nondisclosure of data. Support vector machine classification is one of the most widely used classification methodologies in data mining and machine learning. It is based on solid theoretical foundations and has wide practical application. This paper proposes a privacy-preserving solution for support vector machine (SVM) classification, PP-SVM for short. Our solution constructs the global SVM classification model from data distributed at multiple parties, without disclosing the data of each party to others. Solutions are sketched out for data that is vertically, horizontally, or even arbitrarily partitioned. We quantify the security and efficiency of the proposed method, and highlight future challenges. Jaideep Vaidya received the Bachelor’s degree in Computer Engineering from the University of Mumbai. He received the Master’s and the Ph.D. degrees in Computer Science from Purdue University. He is an Assistant Professor in the Management Science and Information Systems Department at Rutgers University. His research interests include data mining and analysis, information security, and privacy. He has received best paper awards for papers in ICDE and SIDKDD. He is a Member of the IEEE Computer Society and the ACM. Hwanjo Yu received the Ph.D. degree in Computer Science in 2004 from the University of Illinois at Urbana-Champaign. He is an Assistant Professor in the Department of Computer Science at the University of Iowa. His research interests include data mining, machine learning, database, and information systems. He is an Associate Editor of Neurocomputing and served on the NSF Panel in 2006. He has served on the program committees of 2005 ACM SAC on Data Mining track, 2005 and 2006 IEEE ICDM, 2006 ACM CIKM, and 2006 SIAM Data Mining. Xiaoqian Jiang received the B.S. degree in Computer Science from Shanghai Maritime University, Shanghai, 2003. He received the M.C.S. degree in Computer Science from the University of Iowa, Iowa City, 2005. Currently, he is pursuing a Ph.D. degree from the School of Computer Science, Carnegie Mellon University. His research interests are computer vision, machine learning, data mining, and privacy protection technologies.  相似文献   

16.
Ant colony optimization (ACO for short) is a meta-heuristics for hard combinatorial optimization problems. It is a population-based approach that uses exploitation of positive feedback as well as greedy search. In this paper, genetic algorithm's (GA for short) ideas are introduced into ACO to present a new binary-coding based ant colony optimization. Compared with the typical ACO, the algorithm is intended to replace the problem's parameter-space with coding-space, which links ACO with GA so that the fruits of GA can be applied to ACO directly. Furthermore, it can not only solve general combinatorial optimization problems, but also other problems such as function optimization. Based on the algorithm, it is proved that if the pheromone remainder factor ρ is under the condition of ρ≥1, the algorithm can promise to converge at the optimal, whereas if 0<ρ<1, it does not. This work is supported by the Science Foundation of Shanghai Municipal Commission of Science and Technology under Grant No.00JC14052. Tian-Ming Bu received the M.S. degree in computer software and theory from Shanghai University, China, in 2003. And now he is a Ph.D. candidate of Fudan University in the same area of theory computer science. His research interests include algorithms, especially, heuristic algorithms and heuristic algorithms and parallel algorithms, quantum computing and computational complexity. Song-Nian Yu received the B.S. degree in mathematics from Xi'an University of Science and Technology, Xi'an, China, in 1981, the Ph.D. degree under Prof. L. Lovasz's guidance and from Lorand University, Budapest, Hungary, in 1990. Dr. Yu is a professor in the School of Computer Engineering and Science at Shanghai University. He was a visiting professor as a faculty member in Department of Computer Science at Nelson College of Engineering, West Virginia University, from 1998 to 1999. His current research interests include parallel algorithms' design and analyses, graph theory, combinatorial optimization, wavelet analyses, and grid computing. Hui-Wei Guan received the B.S. degree in electronic engineering from Shanghai University, China, in 1982, the M.S. degree in computer engineering from China Textile University, China, in 1989, and the Ph.D. degree in computer science and engineering from Shanghai Jiaotong University, China, in 1993. He is an associate professor in the Department of Computer Science at North Shore Community College, USA. He is a member of IEEE. His current research interests are parallel and distributed computing, high performance computing, distributed database, massively parallel processing system, and intelligent control.  相似文献   

17.
Summary In this paper we construct a formal specification of the problem of synchronizing asynchronous processes under strong fairness. We prove that strong interaction fairness is impossible for binary (and hence for multiway) interactions and strong process fairness is impossible for multiway interactions. Yih-Kuen Tsay received his B.S. degree form National Taiwan University in 1984 and his M.S. degree from UCLA in 1989. He is currently a Ph.D. candidate in the UCLA Computer Science Department. His research interests include distributed algorithms, fault-tolerant systems, and specification and verification of concurrent programs. Rajive L. Bagrodia received the B. Tech. degree in Electrical Engineering from the Indian Institute of Technology, Bombay in 1981 and the M.A. and Ph.D. degrees in Computer Science from the University of Texas at Austin in 1983 and 1987 respectively. He is currently an Assistant Professor in the Computer Science Department at UCLA. His research interests include parallel languages, distributed algorithms, parallel simulation and software design methodologies. He was selected as a 1991 Presidential Young Investigator by NSF.This research was partially supported by NSF PYI Award number ASC9157610 and by ONR under grant N00014-91-J1605  相似文献   

18.
1IntroductionMulticastcommunication,whichreferstothedeliveryofamessagefromasinglesourcenodetoanumberofdestinationnodes,isfrequentlyusedindistributed-memoryparallelcomputersystemsandnetworks[1].Efficientimplementationofmulticastcommunicationiscriticaltotheperformanceofmessage-basedscalableparallelcomputersandswitch-basedhighspeednetworks.Switch-basednetworksorindirectnetworks,basedonsomevariationsofmultistageiDterconnectionnetworks(MINs),haveemergedasapromisingnetworkajrchitectureforconstruct…  相似文献   

19.
This paper presents a metamodel for modeling system features and relationships between features. The underlying idea of this metamodel is to employ features as first-class entities in the problem space of software and to improve the customization of software by explicitly specifying both static and dynamic dependencies between system features. In this metamodel, features are organized as hierarchy structures by the refinement relationships, static dependencies between features are specified by the constraint relationships, and dynamic dependencies between features are captured by the interaction relationships. A first-order logic based method is proposed to formalize constraints and to verify constraints and customization. This paper also presents a framework for interaction classification, and an informal mapping between interactions and constraints through constraint semantics. Hong Mei received the BSc and MSc degrees in computer science from the Nanjing University of Aeronautics and Astronautics (NUAA), China, in 1984 and 1987, respectively, and the PhD degree in computer science from the Shanghai Jiao Tong University in 1992. He is currently a professor of Computer Science at the Peking University, China. His current research interests include Software Engineering and Software Engineering Environment, Software Reuse and Software Component Technology, Distributed Object Technology, and Programming Language. He has published more than 100 technical papers. Wei Zhang received the BSc in Engineering Thermophysics and the MSc in Computer Science from the Nanjing University of Aeronautics and Astronautics (NUAA), China, in 1999 and 2002, respectively. He is currently a PhD student at the School of Electronics Engineering and Computer Science of the Peking University, China. His research interests include feature-oriented requirements modeling, feature-driven software architecture design and feature-oriented software reuse. Haiyan Zhao received both the BSc and the MSc degree in Computer Science from the Peking Univeristy, China, and the Ph.D degree in Information Engineering from the University of Tokyo, Japan. She is currently an associate professor of Computer Science at the Peking University, China. Her research interests include Software Reuse, Domain Engineering, Domain Specific Languange and Program Transformation.  相似文献   

20.
Information service plays a key role in grid system, handles resource discovery and management process. Employing existing information service architectures suffers from poor scalability, long search response time, and large traffic overhead. In this paper, we propose a service club mechanism, called S-Club, for efficient service discovery. In S-Club, an overlay based on existing Grid Information Service (GIS) mesh network of CROWN is built, so that GISs are organized as service clubs. Each club serves for a certain type of service while each GIS may join one or more clubs. S-Club is adopted in our CROWN Grid and the performance of S-Club is evaluated by comprehensive simulations. The results show that S-Club scheme significantly improves search performance and outperforms existing approaches. Chunming Hu is a research staff in the Institute of Advanced Computing Technology at the School of Computer Science and Engineering, Beihang University, Beijing, China. He received his B.E. and M.E. in Department of Computer Science and Engineering in Beihang University. He received the Ph.D. degree in School of Computer Science and Engineering of Beihang University, Beijing, China, 2005. His research interests include peer-to-peer and grid computing; distributed systems and software architectures. Yanmin Zhu is a Ph.D. candidate in the Department of Computer Science, Hong Kong University of Science and Technology. He received his B.S. degree in computer science from Xi’an Jiaotong University, Xi’an, China, in 2002. His research interests include grid computing, peer-to-peer networking, pervasive computing and sensor networks. He is a member of the IEEE and the IEEE Computer Society. Jinpeng Huai is a Professor and Vice President of Beihang University. He serves on the Steering Committee for Advanced Computing Technology Subject, the National High-Tech Program (863) as Chief Scientist. He is a member of the Consulting Committee of the Central Government’s Information Office, and Chairman of the Expert Committee in both the National e-Government Engineering Taskforce and the National e-Government Standard office. Dr. Huai and his colleagues are leading the key projects in e-Science of the National Science Foundation of China (NSFC) and Sino-UK. He has authored over 100 papers. His research interests include middleware, peer-to-peer (P2P), grid computing, trustworthiness and security. Yunhao Liu received his B.S. degree in Automation Department from Tsinghua University, China, in 1995, and an M.A. degree in Beijing Foreign Studies University, China, in 1997, and an M.S. and a Ph.D. degree in computer science and engineering at Michigan State University in 2003 and 2004, respectively. He is now an assistant professor in the Department of Computer Science and Engineering at Hong Kong University of Science and Technology. His research interests include peer-to-peer computing, pervasive computing, distributed systems, network security, grid computing, and high-speed networking. He is a senior member of the IEEE Computer Society. Lionel M. Ni is chair professor and head of the Computer Science and Engineering Department at Hong Kong University of Science and Technology. Lionel M. Ni received the Ph.D. degree in electrical and computer engineering from Purdue University, West Lafayette, Indiana, in 1980. He was a professor of computer science and engineering at Michigan State University from 1981 to 2003, where he received the Distinguished Faculty Award in 1994. His research interests include parallel architectures, distributed systems, high-speed networks, and pervasive computing. A fellow of the IEEE and the IEEE Computer Society, he has chaired many professional conferences and has received a number of awards for authoring outstanding papers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号