首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
The formation of 3-phenoxybenzoic acid from 3-phenoxybenzyl alcohol was determined in (a) rabbit ears, single-pass perfused with a protein-free buffer, pH 7.4; (b) the microsomal fraction and its supernatant from homogenized rabbit skin; and (c) purified alcohol dehydrogenase from horse liver and baker's yeast. The inhibition of product formation in (a) was about 60% by various 4-methylpyrazole concentrations, but metyrapone had no effect. Following ultracentrifugation, only the supernatant of homogenized skin showed product formation (apparent Vmay: 32 pmol/min per cm2 skin; apparent Km: 64 microM). 3-Phenoxybenzyl alcohol and ethanol dehydrogenation was similar by alcohol dehydrogenase from horse liver (apparent Km: 0.7 vs. 0.4 mM; apparent Vmax: 0.3 vs. 0.2 U/ microg protein). In baker's yeast, the apparent Km of 3-phenoxybenzoic acid formation was several times larger than that for ethanol dehydrogenation. The KI of 4-methylpyrazole for alcohol dehydrogenase from horse liver was 0.6 (3-phenoxybenzyl alcohol) vs. 0.04 microM (ethanol). The KI for ethanol in baker's yeast was 470 microM. In conclusion dehydrogenation is an important metabolic pathway in the skin for xenobiotics with an aliphatic alcohol at a side chain.  相似文献   

2.
The NADH absorbance spectrum of nicotinoprotein (NADH-containing) alcohol dehydrogenase from Amycolatopsis methanolica has a maximum at 326 nm. Reduced enzyme-bound pyridine dinucleotide could be reversibly oxidized by acetaldehyde. The fluorescence excitation spectrum for NADH bound to the enzyme has a maximum at 325 nm. Upon excitation at 290 nm, energy transfer from tryptophan to enzyme-bound NADH was negligible. The fluorescence emission spectrum (excitation at 325 nm) for NADH bound to the enzyme has a maximum at 422 nm. The fluorescence intensity is enhanced by a factor of 3 upon binding of isobutyramide (Kd = 59 microM). Isobutyramide acts as competitive inhibitor (Ki = 46 microM) with respect to the electron acceptor NDMA (N,N-dimethyl-p-nitrosoaniline), which binds to the enzyme containing the reduced cofactor. The nonreactive substrate analogue trifluoroethanol acts as a competitive inhibitor with respect to the substrate ethanol (Ki = 1.6 microM), which binds to the enzyme containing the oxidized cofactor. Far-UV circular dichroism spectra of the enzyme containing NADH and the enzyme containing NAD+ were identical, indicating that no major conformational changes occur upon oxidation or reduction of the cofactor. Near-UV circular dichroism spectra of NADH bound to the enzyme have a minimum at 323 nm (Deltaepsilon = -8.6 M-1 cm-1). The fluorescence anisotropy decay of enzyme-bound NADH showed no rotational freedom of the NADH cofactor. This implies a rigid environment as well as lack of motion of the fluorophore. The average fluorescence lifetime of NADH bound to the enzyme is 0.29 ns at 20 degreesC and could be resolved into at least three components (in the range 0.13-0.96 ns). Upon binding of isobutyramide to the enzyme-containing NADH, the average excited-state lifetime increased to 1.02 ns and could be resolved into two components (0.37 and 1.11 ns). The optical spectra of NADH bound to nicotinoprotein alcohol dehydrogenase have blue-shifted maxima compared to other NADH-dehydrogenase complexes, but comparable to that observed for NADH bound to horse liver alcohol dehydrogenase. The fluorescence lifetime of NADH bound to the nicotinoprotein is very short compared to enzyme-bound NADH complexes, also compared to NADH bound to horse liver alcohol dehydrogenase. The cofactor-protein interaction in the nicotinoprotein alcohol dehydrogenase active site is more rigid and apolar than that in horse liver alcohol dehydrogenase. The optical properties of NADH bound to nicotinoprotein alcohol dehydrogenase differ considerably from NADH (tightly) bound to UDP-galactose epimerase from Escherichia coli. This indicates that although both enzymes have NAD(H) as nonexchangeable cofactor, the NADH binding sites are quite different.  相似文献   

3.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent tobacco-specific carcinogen in animals. Our previous studies indicated that there are differences between rodents and humans for the enzymes involved in the activation of NNK. To determine if the patas monkey is a better animal model for the activation of NNK in humans, we investigated the metabolism of NNK in patas monkey lung and liver microsomes and characterized the enzymes involved in the activation. In lung microsomes, the formation of 4-oxo-1-(3-pyridyl)-1-butanone (keto aldehyde), 4-(methylnitrosamino)-1-(3-pyridyl-N-oxide)-1-butanone (NNK-N-oxide), 4-hydroxy-1-(3-pyridyl)-1-butanone (keto alcohol), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) was observed, displaying apparent Km values of 10.3, 5.4, 4.9, and 902 microM, respectively. NNK metabolism in liver microsomes resulted in the formation of keto aldehyde, keto alcohol, and NNAL, displaying apparent Km values of 8.1, 8.2, and 474 microM, respectively. The low Km values for NNK oxidation in the patas monkey lung and liver microsomes are different from those in human lung and liver microsomes showing Km values of 400-653 microM, although loss of low Km forms from human tissue as a result of disease, surgery or anesthesia cannot be ruled out. Carbon monoxide (90%) significantly inhibited NNK metabolism in the patas monkey lung and liver microsomes by 38-66% and 82-91%, respectively. Nordihydroguaiaretic acid (a lipoxygenase inhibitor) and aspirin (a cyclooxygenase inhibitor) decreased the rate of formation of keto aldehyde and keto alcohol by 10-20 % in the monkey lung microsomes. Alpha-Napthoflavone and coumarin markedly decreased the oxidation of NNK in monkey lung and liver microsomes, suggesting the involvement of P450s 1A and 2A6. An antibody against human P450 2A6 decreased the oxidation of NNK by 12-16% and 22-24% in the patas monkey lung and liver microsomes, respectively. These results are comparable to that obtained with human lung and liver microsomes. Coumarin hydroxylation was observed in the patas monkey lung and liver microsomes at a rate of 16 and 4000 pmol/min/mg protein, respectively, which was 5-fold higher than human lung and liver microsomes, respectively. Immunoblot analysis demonstrated that the P450 2A level in the individual patas monkey liver microsomal sample was 6-fold greater than in an individual human liver microsomal sample. Phenethyl isothiocyanate, an inhibitor of NNK activation in rodents and humans, decreased NNK oxidation in the monkey lung and liver microsomes displaying inhibitor concentration resulting in 50% inhibition of the activity (IC50) values of 0.28-0.8 microM and 4.2-6.8 microM, respectively. The results demonstrate the similarities and differences between species in the metabolic activation of NNK. The patas monkey microsomes appear to more closely resemble human microsomes than mouse or rat enzymes and may better reflect the activation of NNK in humans.  相似文献   

4.
2-Phenoxyethanol applied in methanol was absorbed (64 +/- 4.4% at 24 hr) through unoccluded rat skin in vitro in the static diffusion cell with ethanol/water as receptor fluid. By comparison (43 +/- 3.7% in 24 hr) was absorbed in the flow-through diffusion system with tissue culture medium as receptor fluid. 2-Phenoxyethanol applied in methanol was absorbed (59.3 +/- 7.0% at 6 hr) through unoccluded human skin in vitro in the flow-through diffusion cell with tissue culture medium. With both unoccluded cells, 2-phenoxyethanol was lost by evaporation but occlusion of the static cell reduced evaporation and increased total absorption to 98.8 +/- 7.0%. Skin, post mitochondrial fraction, metabolized phenoxyethanol to phenoxyacetic acid at 5% of the rate for liver. Metabolism was inhibited by 1 mM pyrazole, suggesting involvement of alcohol dehydrogenase. However, first-pass metabolism of phenoxyethanol to phenoxyacetic acid was not detected during percutaneous penetration through viable rat skin in the flow-through system. First-pass metabolism in the skin does not therefore have an influence on systemic availability of dermally absorbed phenoxyethanol. These measures of phenoxyethanol absorption through rat and human skin in vitro agree well with those obtained previously in vivo.  相似文献   

5.
The intrinsic fluorescence lifetimes of horse liver alcohol dehydrogenase (EC 1.1.1.1) and pig heart isocitrate dehydrogenase (EC 1.1.1.42) have been determined to be 5.36 ns and 4.84 ns, respectively. When reduced coenzyme is bound, the fluorescence lifetime of alcohol dehydrogenase is reduced to 4.98 ns while that of isocitrate dehydrogenase remains unchanged. Oxidized coenzymes have no effect on fluorescence lifetimes of alcohol and isocitrate dehydrogenases. This virtual constancy of protein fluorescence lifetimes has allowed the conclusion to be reached that in protein-ligand complexes with equilibrium constants in the range of 10(4)-10(6) M(-1), the static mode of quenching is substantial. The observation of resonance energy transfer in alcohol dehydrogenase-NADH complex facilitates the determination of the distance between tryptophan and the reduced nicotinamide ring involved in the transfer as 30.6 A, compared to the effective molecular radius of 36.2 A for alcohol dehydrogenase. The increased rotational relaxation times of coenzyme-bound alcohol dehydrogenase relative to the unliganded form (sigmah = 72 ns) indicate in this protein structural fluctuations occurring in the time range of nanoseconds.  相似文献   

6.
To evaluate how two inhibitors influence oxidative drug metabolism, this study investigated the inhibitory effects of mexiletine with cimetidine and mexiletine with lidocaine, both individually and in combination, on the oxidative metabolism of two probe substrates, aminopyrine and aniline in rat liver microsomes. Mexiletine was a competitive inhibitor of aminopyrine N-demethylation, whereas cimetidine was a mixed type of inhibitor (Ki = 2.00 +/- 0.04 and 0.20 +/- 0.02 mM, respectively). For aniline hydroxylation, mexiletine exhibited a mixed type of inhibition, whereas lidocaine was a noncompetitive inhibitor (Ki = 0.60 +/- 0.07 and 8.50 +/- 0.12 mM, respectively). The combined inhibition of either mexiletine with cimetidine or mexiletine with lidocaine on aminopyrine and aniline metabolism was close to the fully additive effects of the individual compounds when their individual concentrations were below a 2-fold Ki concentration, regardless of the apparent kinetic inhibition type. The combined inhibition was less than fully additive when the individual concentrations were twice the Ki or above. These results demonstrate that, when two inhibitors of oxidative drug metabolism are combined, both the Ki values and the concentrations of inhibitors play important roles in determining the extent of additive inhibition of enzyme activity.  相似文献   

7.
Nicotine is primarily metabolized to cotinine by cytochromes P450 (CYPs). The degree of variation in the metabolism of nicotine to cotinine and the relative roles of the polymorphic enzymes CYP2A6 and CYP2D6 in this metabolism were investigated. The apparent K(m) and V(max) values (mean +/- S.D.) for cotinine formation in human liver microsomes (n = 31) were 64.9 +/- 32.7 microM and 28.1 +/- 28.7 nmol/mg of protein/hr, respectively. A 30-fold difference was seen among the individual V(max) values, with four livers showing significantly higher rates of cotinine formation. CYP2D6 is unimportant in nicotine metabolism because quinidine (a CYP2D6 inhibitor) had little effect on inhibition of cotinine formation; V(max) values for dextromethorphan (CYP2D6 probe substrate) and nicotine (n = 9) did not correlate (r = .49, P = .18), and a cDNA CYP2D6 expression system failed to metabolize nicotine to cotinine. CYP2A6 appears to be the major P450 involved in human nicotine metabolism to cotinine. Coumarin, a specific and selective CYP2A6 substrate, competitively inhibited cotinine formation by 85 +/- 11% (mean +/- S.D.) in 31 human livers. The K(i) value for this inhibition ranged from 1 to 5 microM, and a CYP2A6 monoclonal antibody inhibited cotinine formation by >75%. Immunochemically determined CYP2A6 correlated significantly with nicotine-to-cotinine V(max) values (r = .90, n = 30, P < .001) and to inhibition of nicotine metabolism by coumarin (r = .94, n = 30, P < .001). These data indicate that nicotine metabolism is highly variable among individual livers and that this is due to variable expression of CYP2A6, not CYP2D6.  相似文献   

8.
Curcumin, which is a widely used dietary pigment and spice, has been demonstrated to be an effective inhibitor of tumor promotion in mouse skin carcinogenesis. We report that curcumin induces cell shrinkage, chromatin condensation, and DNA fragmentation, characteristics of apoptosis, in immortalized mouse embryo fibroblast NIH 3T3 erb B2 oncogene-transformed NIH 3T3, mouse sarcoma S180, human colon cancer cell HT-29, human kidney cancer cell 293, and human hepatocellular carcinoma Hep G2 cells, but not in primary culture of mouse embryonic fibroblast C3H 10T1/2, rat embryonic fibroblast, and human foreskin fibroblast cells in a concentration- and time-dependent manner. Many cellular and biochemical effects of curcumin in mouse fibroblast cells have been reported, such as inhibition of protein kinase C (PKC) activity induced by phorbol 12-myristate 13-acetate treatment, inhibition of tyrosine protein kinase activity, and inhibition of arachidonic acid (AA) metabolism. Treatment of NIH 3T3 cells with the PKC inhibitor staurosporine, the tyrosine kinase inhibitor herbimycin A, and the AA metabolism inhibitor quinacrine induces apoptotic cell death. These results suggest that, in some immortalized and transformed cells, blocking the cellular signal transduction might trigger the induction of apoptosis.  相似文献   

9.
The relationship between the size of the substrate binding pocket and the catalytic reactivities with varied alcohols was studied with the Saccharomyces cerevisiae alcohol dehydrogenase I (ScADH) and compared with the liver enzymes from horse (EqADH, EE isoenzyme) and monkey (MmADH alpha, alpha-isoenzyme). The yeast enzyme is most active with ethanol, and its activity decreases as the size of the alcohol is increased, whereas the activities of the liver enzymes increase with larger alcohols. The substrate pocket in ScADH was enlarged by single substitutions of Thr-48 to Ser (T48S), Trp-57 to Met (W57M), and Trp-93 to Ala (W93A), and a double change, T48S:W93A, and a triple, T48S:W57M:W93A. The T48S enzyme has the same pattern of activity (V/K) as wild-type ScADH for linear primary alcohols. The W57M enzymes have lowered reactivity with primary and secondary alcohols. The W93A and T48S:W93A enzymes resemble MmADH alpha in having an inverted specificity pattern for primary alcohols, being 3- and 10-fold more active on hexanol and 350- and 540-fold less active on ethanol, and are as reactive as the liver enzymes with long chain primary alcohols. The three Ala-93 enzymes also acquired weak activity on branched chain alcohols and cyclohexanol.  相似文献   

10.
Intraperitoneal injections of an aqueous extract of winter cherry fruits (Physalis alkekengi) to new-born, weanling and adult female rats and to weanling and adult male rats had no effect on body weight, liver weight and liver cytosol protein content. The specific activities of hepatic glucose 6-P dehydrogenase (an estrogen induced protein) in rats of different age and sex groups in terms of mU/mg protein were: treated new-born females, 15.9 +/- 0.5; control, 29.1 +/- 0.6; treated weanling females, 14.9 +/- 0.3; control, 24.8 +/- 0.7; treated adult females, 25.7 +/- 0.5; control, 26.1 +/- 0.5; treated weanling males, 7.9 +/- 0.2; control, 7.9 +/- 0.1; treated adult males, 9.6 +/- 0.4; and control, 9.7 +/- 0.3. Treatment of new-born and weanling female rats with the extract resulted in 40-45% reduction in hepatic G6PD activity. However, treatment of adult females, and weanling and adult males produced no significant change in the activity of this enzyme. The data are discussed both in terms of the increase in the capacity of rodent liver to metabolize steroidal compounds with age and the presence of low levels of circulating estradiol necessary for enzyme induction in male rats.  相似文献   

11.
Methotrexate (MTX) was investigated for possible effect on the metabolism of ethoxyresorufin, pentoxyresorufin and ethoxycoumarin, the model substrates of cytochrome P450. The investigation was carried out in liver microsomes of rats pretreated with classical inducers of cytochrome P450 as well as in microsomes of two human livers. Furthermore, we measured the conversion of MTX (100microM) to its main metabolite, 7-hydroxymethotrexate (7-OHMTX), in microsomes and cytosolic fractions of rat and human livers. The inhibition of 7-OHMTX formation by menadion (inhibitor of aldehyde oxidase) and allopurinol (inhibitor of xanthine oxidase) was studied in the cytosol of rat and human livers. In both species, MTX in the concentration range 0.5-500 microM exerted no inhibitory effect on enzymatic activities associated with cytochrome P450. Moreover, we did not observe any measurable formation of 7-OHMTX in liver microsomes. MTX was metabolized at a similar rate in the cytosol of rat and human liver. Allopurinol (100 microM) reduced the rate of MTX hydroxylation by 31.5% in the cytosol of human livers but had no effect in the rat. Menadion (100 microM) decreased the rate of 7-OHMTX formation in the cytosol of human and rat liver by 69% and 94%, respectively. Our results confirmed that MTX is oxidized by a soluble enzymatic system in both the rat and human liver. In human tissues, both aldehyde oxidase and xanthine oxidase may play an important role in the metabolism of MTX. Depression of cytochrome P450 and related enzymatic activities observed in vivo cannot be explained by a direct inhibitory action of MTX on cytochrome P450.  相似文献   

12.
The present study has determined the effect of 6-nitrochrysene (6-NC) on hepatic and pulmonary cytochrome P450 (P450)-dependent monooxygenases using hamsters pretreated with the nitrated polycyclic aromatic hydrocarbon (nitro-PAH) at 5 mg/kg per day for 3 days. Pretreatment with 6-NC elevated serum gamma-glutamyltranspeptidase, lactate dehydrogenase, and bilirubin levels. Liver S9 fractions prepared from controls and hamsters pretreated with 6-NC markedly increased mutagenicity of the nitro-PAH in Salmonella typhimurium tester strains TA98, TA100, and TA102. The pretreatment selectively increased 1-nitropyrene reductase activities of lung cytosol and liver and lung microsomes. Pretreatment with 6-NC resulted in increases of microsomal 7-ethoxyresorufin and methoxyresorufin O-dealkylases activities in liver and lung without affecting the monooxygenase activities in kidney. Immunoblot analysis of microsomal proteins using mouse monoclonal antibody 1-12-3 to rat P450 1A1 revealed that 6-NC induced P450 1A-immunorelated proteins in liver and lung. RNA blot analysis using mouse P450 1A1 cDNA showed that 6-NC increased liver and lung P450 1A mRNA. 6-NC had no effect on the kidney P450 protein and mRNA. The present study demonstrates that the hamster enzymes can support 6-NC metabolic activation and the nitro-PAH induces liver and lung P4501A via a pretranslational mechanism.  相似文献   

13.
1. Neurogenic plasma extravasation evoked by topical application of 1% vv(-1) mustard oil on the skin of the acutely denervated rat hindleg (primary reaction) inhibited the development of a subsequent oil-induced plasma extravasation induced in the skin of the contralateral hindleg by 49.3+/-7.06% (n=9) and in the conjunctival mucosa due to 0.1% wv(-1) capsaicin instillation by 33.5+/-10.05% (n=6). The primary reaction also inhibited the non-neurogenic hindpaw oedema evoked by s.c. injection of 5% wv(-1) dextran into the chronically denervated hindpaw by 48.0+/-4.6% (n= 5). 2. Capsaicin injection (100 microg ml(-1) in 50 microl, s.c.) into the acutely denervated hindleg caused 56.5+/-4.0% (n=5) inhibition in the intensity of plasma extravasation elicited by 1% vv(-1) mustard oil smearing on the contralateral side. After chronic denervation, subplantar injection of 5% wv(-1) dextran elicited a non-neurogenic inflammatory response with intensive tissue oedema without causing any systemic anti-inflammatory effect. Bilateral adrenalectomy did not inhibit the mustard oil-induced anti-inflammatory effect in the contralateral hindleg. 3. Pretreating the rats with polyclonal somatostatin antiserum (0.5 ml rat(-1), i.v.) or with the somatostatin depleting agent cysteamine (280 mg kg(-1), s.c.) prevented the inhibitory action of mustard oil-induced inflammation on subsequent neurogenic plasma extravasation and strongly diminished the inhibition of non-neurogenic oedema formation evoked by dextran. 4. Exogenous somatostatin (10 microg kg(-1), i.p.) caused a 30.3+/-8.3% (n=6) inhibition of plasma extravasation caused by mustard oil smearing on the acutely denervated hindleg and this inhibitory effect was abolished by somatostatin antiserum (0.5 ml rat(-1), i.v.). The plasma level of somatostatin-like immunoreactivity (SST-LI) increased by 40.03+/-6.8% (n= 6) 10 min after topical application of 1% vv(-1) mustard oil on the acutely denervated hindpaws compared to the paraffin oil treated control group. Chronic denervation of the hindlegs or cysteamine (280 mg kg(-1), s.c.) pretreatment prevented the mustard oil-induced elevation of SST-LI in plasma. 5. It is concluded that chemical excitation of the capsaicin-sensitive sensory receptors not only induces local neurogenic plasma extravasation but also inhibits the development of a subsequent inflammatory reaction at remote sites of the body in the rat. A role for somatostatin in this systemic anti-inflammatory effect is suggested.  相似文献   

14.
In order to examine glucose metabolism in liver grafts during cold preservation (24 and 48 hr), warm ischemia (60 and 120 min), a combination of the two and reperfusion, the amount of protein and mRNA of glucose transporter 2 and the activities of enzymes in glycolysis (glucokinase, phosphofructokinase, pyruvatekinase), gluconeogenesis (glucose 6-phosphatase, fructose 1,6-bisphosphatase), and the pentose phosphate pathway (glucose 6-phosphate dehydrogenase) were measured. It appeared that glucose transport, the pentose phosphate pathway, and gluconeogenesis were maintained during cold preservation and warm ischemia. The activity of glucokinase significantly decreased from the control value of 1.33 +/- 0.23 IU/g protein to 0.70 +/- 0.17 (24 hr, P<0.05) and 0.57 +/- 0.12 (48 hr, P<0.01) only during cold preservation. However, the activity of phosphofructokinase significantly decreased from the control value of 4.37 +/- 0.06 IU/g protein to 2.67 +/- 0.15 (60 min, P<0.0001) and 1.53 +/- 0.06 (120 min, P<0.0001) only during warm ischemia. This indicates that glycolysis deteriorates during both cold preservation and warm ischemia and demonstrates further that the balance between glycolysis and gluconeogenesis shifts to gluconeogenesis. Even when cold preservation was combined with warm ischemia, the activity of glucokinase decreased only during cold preservation and the activity of phosphofructokinase decreased only during warm ischemia. Furthermore, these changes were time-dependent. It is suggested that they can be used as a clock to measure the durations of cold preservation and warm ischemia separately and that the magnitude of an ischemic injury to a liver and a liver graft's viability can be indirectly estimated before transplantation.  相似文献   

15.
Crude extracts containing the enzymes obtained from mouse liver were incubated with 3-deoxyglucosone (3-DG), and then subjected to assay of the activities of enzymes responsible for glucose metabolism. Hexokinase and glucose-6-phosphate dehydrogenase activities were decreased by 3-DG and hexokinase activity was strongly inhibited time and concentration dependently, while glucokinase, glucose-6-phosphatase, and phosphofructokinase activities were scarcely affected. These results suggest that 3-DG inhibits the intake of glucose in the liver and a connection with development of diabetes.  相似文献   

16.
This study compared catalytic and immunochemical properties of drug metabolizing phase I and II enzyme systems in houbara bustard (Chlamydotis undulata) liver and kidney and rat liver. P450 content in bustard liver (0.34 +/- 0.03 nmol mg-1 protein) was 50% lower than that of rat liver (0.70 +/- 0.02 nmol mg-1 protein). With the exception of aniline hydroxylase activity, monooxygenase activities using aminopyrine, ethoxyresorufin and ethoxycoumarin as substrates were all significantly lower than corresponding rat liver enzymes. As found in mammalian systems the P450 activities in the bird liver were higher than in the kidney. Immunohistochemical analysis of microsomes using antibodies to rat hepatic P450 demonstrated that bustard liver and kidney express P4502C11 homologous protein; no appreciable cross-reactivity was observed in bustards using antibodies to P4502E1, 1A1 or 1A2 isoenzymes. Glutathione content and glutathione S-transferase (GST) activity in bustard liver were comparable with those of rat liver. GST activity in the kidney was 65% lower than the liver. Western blotting of liver and kidney cytosol with human GST isoenzyme-specific antibodies revealed that the expression of alpha-class of antibodies exceeds mu in the bustard. In contrast, the pi-class of GST was not detected in the bustard liver. This data demonstrates that hepatic and renal microsomes from the bustard have multiple forms of phase I and phase II enzymes. The multiplicity and tissue specific expression of xenobiotic metabolizing enzymes in bustards may play a significant role in determining the pharmacokinetics of drugs and susceptibility of the birds to various environmental pollutants and toxic insults.  相似文献   

17.
Helicobacter pylori contains alcohol dehydrogenase which oxidizes ethanol to acetaldehyde. In the present study, H. pylori cytosol was incubated in a buffered media at pH 6.0 and 7.4 in the presence of ethanol and tryptamine. Under these conditions, tetrahydroharman (1-methyl-tetrahydro-beta-carboline) was produced as a condensation product of tryptamine and acetaldehyde. At pH 6.0, 20.60 +/- 5.00% of the added tryptamine was converted to tetrahydroharman, while 27.00 +/- 4.80% (mean +/-SD) was converted at pH 7.4. Similar reactions between acetaldehyde and other dietary amines seem likely. Such biogenic alkaloids, if formed in vivo, might contribute to the dysphoric effects of alcohol.  相似文献   

18.
Chemically reactive epoxide metabolites have been implicated in various forms of drug and chemical toxicity. Naphthalene, which is metabolized to a 1,2-epoxide, has been used as a model compound in this study in order to investigate the effects of perturbation of detoxication mechanisms on the in vitro toxicity of epoxides in the presence of human liver microsomes. Naphthalene (100 microM) was metabolized to cytotoxic, protein-reactive and stable, but not genotoxic, metabolites by human liver microsomes. The metabolism-dependent cytotoxicity and covalent binding to protein of naphthalene were significantly higher in the presence of phenobarbitone-induced mouse liver microsomes than with human liver microsomes. The ratio of trans-1,2-dihydrodiol to 1-naphthol was 8.6 and 0.4 with the human and the induced mouse microsomes, respectively. The metabolism-dependent toxicity of naphthalene toward human peripheral mononuclear leucocytes was not affected by the glutathione transferase mu status of the co-incubated cells. Trichloropropene oxide (TCPO; 30 microM), an epoxide hydrolase inhibitor, increased the human liver microsomal-dependent cytotoxicity (19.6 +/- 0.9% vs 28.7 +/- 1.0%; P = 0.02) and covalent binding to protein (1.4 +/- 0.3% vs 2.8 +/- 0.2%; P = 0.03) of naphthalene (100 microM), and reversed the 1,2-dihydrodiol to 1-naphthol ratio from 6.6 (without TCPO) to 2.6, 0.6 and 0.1 at TCPO concentrations of 30, 100 and 500 microM, respectively. Increasing the human liver microsomal protein concentration reduced the cytotoxicity of naphthalene, while increasing its covalent binding to protein and the formation of the 1,2-dihydrodiol metabolite. Co-incubation with glutathione (5 mM) reduced the cytotoxicity and covalent binding to protein of naphthalene by 68 and 64%, respectively. Covalent binding to protein was also inhibited by gestodene, while stable metabolite formation was reduced by gestodene (250 microM) and enoxacin (250 microM). The study demonstrates that human liver cytochrome P450 enzymes metabolize naphthalene to a cytotoxic and protein-reactive, but not genotoxic, metabolite which is probably an epoxide. This is rapidly detoxified by microsomal epoxide hydrolase, the efficiency of which can be readily determined by measurement of the ratio of the stable metabolites, naphthalene 1,2-dihydrodiol and 1-naphthol.  相似文献   

19.
A membrane-bound protease induced by sulfur mustard in cultured normal human epidermal keratinocytes (NHEK) was purified and partially characterized. Maximum enzyme stimulation occurred at 16 hr after normal human epidermal keratinocytes were exposed to 300 microM sulfur mustard. Purification to homogeneity of the protease was accomplished by Triton X-100 solubilization, ultracentrifugation, and dialysis, followed by ion-exchange chromatography through DEAE-cellulose and finally hydrophobic column chromatography through phenyl Sepharose. Analysis of the purified enzyme by SDS-PAGE revealed a single polypeptide at the 80 kDa region. Further investigation of biochemical properties showed that a synthetic serine-specific Chromozym TRY peptide and the physiological protein laminin were good substrates for this enzyme. Moreover, this enzyme was inhibited mostly by the serine-protease inhibitors leupeptin and di-isopropyl fluorophosphate and not by the cysteine protease inhibitor E-64 or the metalloprotease inhibitor 1,10-phenanthroline (Component H, CH), indicating the serine protease nature of this enzyme. This enzyme had a pH optimum in the range of 7.0 to 8.0. Amino acid sequencing of the purified enzyme revealed that this enzyme belongs to the endopeptidase family (serine protease), and is homologous with a mammalian-type bacterial serine endopeptidase that can preferentially cleave K-X, including K-P. These results suggest that serine-protease stimulation may be one of the mechanisms of mustard-induced skin blister formation, and that some specific serine-protease inhibitors may be useful for the treatment of this sulfur mustard toxicity.  相似文献   

20.
The inhibitory effect of 3-diethylaminophenyl-N-methylcarbamate methiodide on rat brain acetylcholinesterase and horse plasma butyrylcholinesterase was studied in vitro. This quaternary carbamate is a more potent inhibitor of acetylcholinesterase than butyrylcholinesterase. Complete inhibition of acetylcholinesterase may be achieved without any inhibition of butyrylcholinesterase, i.e. that 3-diethylaminophenyl-N-methylcarbamate methiodide is a selective inhibitor of acetylcholinesterase. The inhibitory effect of different doses of this compound on plasma and liver butyrylcholinesterase and erythrocyte, brain, heart and diaphragm acetylcholinesterase of the rat was studied in vivo. With increasing doses of carbamate the inhibition of the enzymes in the plasma, erythrocytes, liver, heart, and diaphragm increased while the brain acetylcholinesterase was unaffected. The toxic action of carbamate studied was preferably due to acetylcholin esterase inhibition in the peripheral nervous system and this compound cannot penetrate the blood-brain barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号