首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
袁志鹏  朱立光  王杏娟  王博  张燕超 《钢铁》2022,57(12):97-108
 针对高拉速薄板坯连铸保护渣现场使用过程中卷渣风险加剧、黏结报警频发等问题,通过使保护渣产生非牛顿流体行为,从而有效解决上述问题。该种新型保护渣具有剪切变稀的特性,即在较低剪切速率下具有较高黏度、在较高剪切速率下具有较低黏度。基于现场数据,计算出高拉速薄板坯结晶器钢液面表面区域的剪切速率为10~90 s-1,结晶器弯月面及以下区域的剪切速率可达120~1 600 s-1。采用旋转圆筒法研究了Al2O3对保护渣剪切变稀性质的影响。采用Oswald-De Waele幂律模型对剪切变稀行为进行了定量分析。结果表明,随着Al2O3含量的增加,保护渣剪切变稀性质先增强后减弱,Al2O3质量分数为8.61%的试样剪切变稀性质最强,其流动性指数最低达到0.764 4。研究发现,非牛顿流体保护渣具有的剪切变稀性质能够满足在结晶器钢液面表面区域和弯月面及以下区域内对保护渣黏度的要求。基于高拉速薄板坯连铸的具体工艺参数,建立结晶器内多相耦合模型,通过模型计算发现,保护渣的剪切变稀性质增强不仅会明显降低剪切卷渣的风险,提高结晶器弯月面区域液渣流入的均匀性,而且在结晶器弯月面及以下区域具有更厚的液态渣膜,更容易实现全程液态润滑,同时提高了渣耗量,进一步剖析了保护渣剪切变稀性质的作用效果。本研究为开发非牛顿流体高拉速薄板坯连铸保护渣提供了理论依据。  相似文献   

2.
连续铸钢工艺的成功与保护渣的正确使用密不可分,但保护渣在结晶器内发生的氟化物挥发、卷渣、控热与润滑的矛盾又制约了绿色和高效连铸的发展.重庆大学通过对保护渣在结晶器内进行物理化学研究,发现保护渣中以铝为代表的网络形成中间体元素具有适应结晶器工况环境的功效.这些功效包括:(1)抑制保护渣与水之间离子交换程度,起到固氟和固钠的作用;(2)形成异类网络结构,使熔渣产生明显的剪切稀化行为,实现保护渣不同位置黏度大小控制;(3)在低碱度条件下表现出独特的热扩散效应,促使玻璃渣膜变成晶体渣膜.在此基础上,提出连铸结晶器“自适应保护渣”设计理论,利用这一理论开发出环境友好、非牛顿流体及热扩散效应保护渣.工业应用结果表明这类保护渣无需降氟就可达到环境友好、降低超低碳钢冷轧板封锁率及提升304D高氮不锈钢板坯表面质量的效果.  相似文献   

3.
高速连铸结晶器保护渣流变特性的研究   总被引:2,自引:0,他引:2  
用改进的可变转速粘度仪测定了连铸保护渣(%:1.47MgO,12.98Al2O3,47.57SiO2,7.71Na2O,28.52CaO,1.75TiO2)的流变特性,以试验总误差为测量牛顿流体时所容许的最大偏差,由试验得到不同转速下剪切速率D和剪切应力τ,作出τ~D对数曲线,经回归得出熔渣本构方程,以判别熔体是否为非牛顿流体。结果表明,在1200℃较低温度下,该保护渣仍为牛顿流体,如再加入较多的CaO,则保护渣变为非牛顿流体。  相似文献   

4.
采用改造后可变转速的粘度仪测定了不同氧化物和温度对高速连铸无氟保护渣流变特性的影响,并确定了不同条件下保护渣本构方程的形式(即修正后的本构方程).在实验温度条件下,保护渣为牛顿流体;加入CaO后,保护渣的表观粘度显著增加,为非牛顿流体;加入氧化物TiO2后,保护渣的表观粘度略微增加;当氧化物(TiO2 或CaO)的加入量达到一定后,保护渣为非牛顿流体.实验结果为深入研究无氟保护渣提供了新的思路和方法.  相似文献   

5.
通过实验室模拟含钛钢与保护渣的钢渣界面反应,对比不同SiO2含量的保护渣钢渣反应前后熔点、粘度等性能变化情况。实验分析表明,钢渣反应后传统CaO-SiO2渣熔点和黏度大幅度升高,而降低含钛钢保护渣中SiO2含量能有效减弱钢渣反应,采用CaO-Al2O3渣能够保证保护渣熔点、黏度等的稳定,削弱钢渣反应同时提高TiN的吸收能力进而有利于含钛钢连铸工艺的顺行,完全有可能实现含钛钢多炉连浇的需求,成为很有前景的含钛钢连铸保护渣新渣系。  相似文献   

6.
 针对特厚板连铸工艺的特点,分析了传统的中厚板连铸保护渣与特厚板连铸保护渣的作用特征差异。根据不同钢种在结晶器内的凝固特性,对新钢特厚板连铸保护渣进行了系列规划,分为高碳钢连铸保护渣、包晶钢连铸保护渣、中碳低合金钢连铸保护渣3大类。在此基础上,提出了保护渣熔化温度、黏度、转折温度、结晶比例的控制范围。生产实践表明,设计的保护渣浇铸过程结晶器内状况良好,渣面无结团、结块现象,液渣层厚度合适,保护渣消耗量正常,铸坯表面质量优良,连铸生产工艺顺行。  相似文献   

7.
杨东明  杨治争  王延锋  饶江平  孙云虎  成军 《炼钢》2011,27(6):16-19,23
通过对武汉钢铁股份有限公司炼钢总厂四分厂低碳钢卷表面缺陷产生原因进行分析,认为结晶器卷渣是主要影响因素。在研究结晶器卷渣机理的基础上,通过调整保护渣成分、提高保护渣的黏度以及生产对比试验,开发出适合该厂连铸生产的高黏度保护渣,并提出了操作要点。应用结果表明,该保护渣对于控制成品质量、提高生产稳定性均具有明显效果。  相似文献   

8.
针对传统包晶钢保护渣在使用过程中的不足,确保保护渣传热性能的前提下兼顾润滑效果,为小方坯包晶钢的连铸高效稳定生产提供新的技术方案.通过保护渣成分设计优化,在原有保护渣的基础上适当降低碱度和黏度,引入LiO2和过渡族金属氧化物(Fe2 O3、MnO),并降低F含量,改善了保护渣在高拉速生产条件下的适用性及稳定性.在一系列...  相似文献   

9.
周云  张猛超  赵张发 《炼钢》2012,28(3):66-69
连铸时结晶器保护渣的黏度、结晶温度会对钢坯质量产生较大影响,采用旋转柱体法、黏温曲线分析法并结合扫描电子显微镜,研究了马鞍山钢铁股份有限公司3种不同保护渣的黏度、结晶温度。结果表明,马钢二炼钢厂生产Q420B铁塔用角钢的结晶器保护渣1 300℃时黏度0.298 Pa.s,结晶温度约1 180℃,为三者中最低。为降低卷渣情况和提高钢材质量,将黏度提高到0.35 Pa.s左右,并适当调节碱度使结晶温度升高,生产中卷渣及裂纹情况得到了较好的控制。  相似文献   

10.
针对目前高铝钢用结晶器保护渣中SiO2易被钢液中的Al还原而导致连铸无法顺行的问题,设计了低SiO2试验渣系并进行粘-温曲线及熔点测试试验。结果表明:低SiO2渣系具有良好的基本理化性质,具有工业应用的潜能;通过热力学分析及钢-渣界面反应试验证明,当保护渣中SiO2含量低于6%时为非反应性保护渣。  相似文献   

11.
杨军  盛建华  陆力军  顾学红 《钢铁》2012,47(2):26-29
 由于钢种特点,连铸马氏体不锈钢板坯容易产生裂纹缺陷,影响生产节奏和修磨效率;同时,由于采用通用型保护渣,也无法针对马氏体不锈钢板坯质量问题做出进一步改进。因此,尝试马氏体不锈钢板坯连铸保护渣的国产化研制和使用,通过保护渣碱度、CaF等的不同范围与保护渣结晶、黏度性能的关系研究,确定采用高碱度、低黏度、高结晶性的保护渣设计原则,并由此得出了适应马氏体不锈钢板坯连铸的保护渣设计方案。实际使用过程中,板坯纵裂率下降幅度达到30%,证明了马氏体不锈钢连铸板坯保护渣设计和研制的合理性和可行性。  相似文献   

12.
汽车轻量化有助于保护环境、节约能源,高铝钢有利于减轻汽车质量同时维持强塑性。但由于连铸过程中传统结晶器保护渣界面反应的制约,高合金钢铸坯质量和操作流畅性受到很大影响,引起裂纹、漏钢等问题。不仅会造成安全事故,还会增加成本。低反应型CaO-Al_2O_3系保护渣相对于传统保护渣,SiO_2质量分数在6%~10%之间,[Al]和(SiO_2)渣钢界面反应程度显著减弱,具有提高铸坯质量和确保操作顺行的潜力。设计此类保护渣时应该考虑渣钢界面反应、渣中元素向钢液中富集对铸坯质量的影响以及可能的结晶相种类。探讨了低反应型保护渣中成分对黏度变化机制的影响,即熔渣结构的变化、渣系过热度的变化和结晶相的变化。分别讨论了CaO/Al_2O_3、B_2O_3、Na_2O、Li_2O和CaF_2在CaO-Al_2O_3渣系中的作用,旨在为满足高铝钢连铸生产的新一代低反应型保护渣系的设计与优化提供思路与便利。  相似文献   

13.
韩秀丽  刘盈盈  刘磊  闫晓鹏  刘子瑶 《钢铁》2022,57(10):10-18
 随着钢铁技术的进步和社会发展需求,钢铁企业正在研发和生产强度高、韧性好、抗腐蚀性强等各种类型的高质量特殊钢种。如何有效控制特殊钢种连铸生产工艺的稳定性是当前保护渣开发面临的共性难题。设计研发合理的保护渣化学成分、稳定其物化性能,以保证特殊钢种良好的铸坯质量是钢铁冶金领域科研人员关注的热点问题。为此,有关科研人员开展了大量的保护渣基础理论及应用研究,取得了一定的成效。大多数学者研究认为,在传统保护渣中添加一定量的TiO2可以改善保护渣物化性能、提高吸附夹杂物的能力、阻止钢-渣界面反应、减少铸坯质量问题的发生。保护渣中TiO2质量分数为4%~8%、碱度为1.1~1.3时,可以有效改善保护渣的熔化温度、黏度以及热流密度等物化性能,对渣膜结晶也可以起到促进作用,能基本满足高钛钢、高铝钢等特殊钢种的要求;含钛保护渣渣膜中的钙钛矿可以代替传统保护渣渣膜中的枪晶石,对保护渣的传热起着决定性的作用;含钛保护渣吸收钢水中夹杂物后,保护渣的物理性能保持稳定,并可以防止特殊钢水中的钛与保护渣发生界面反应而引起的铸坯表面“结鱼”等问题的发生;含钛型保护渣在某些特殊钢种中已进行初步探索应用并取得阶段性成果。关于渣膜中钙钛矿及其他矿物对含钛型保护渣传热的影响机理,如何更好地协调保护渣的基础性能与润滑传热机制之间的矛盾,实现含钛型保护渣在连铸工艺中的广泛应用,以满足连铸工艺优质高效稳定的生产需要,仍是冶金工作者进一步研究的主要课题。  相似文献   

14.
结晶器保护渣是连铸过程中非常重要的功能材料.采用旋转黏度测试仪结合MoSi2高温炉及高频加热炉分别研究传统无磁场条件及高频磁场条件下保护渣的黏度特性,并运用有限元软件数值模拟高频磁场作用下保护渣的流场.结果发现:高频电磁场作用下保护渣黏度显著升高.二元碱度在0.66~0.91范围内,1 300℃黏度升高幅度随碱度增加而增加,而熔化性温度升高幅度随碱度增加而降低.电磁力打乱了保护渣有序的离子结构,使得离子速率增加,是导致保护渣黏度大幅增加的主要原因.  相似文献   

15.
翟冰钰  王万林  张磊 《炼钢》2020,36(1):50-56
高拉速连铸技术因其高效生产的优点而备受人们关注,其中典型的紧凑型带钢连铸技术的连铸速度普遍提高至3~6 m/min,甚至达9 m/min。因高拉速连铸技术的拉坯速度提高,导致结晶器内部许多参数发生了改变,使得该工艺对保护渣的要求也变得颇为严苛。针对紧凑型带钢连铸连轧生产中碳钢所用保护渣开展了研究,并与传统低拉速连铸保护渣的理化性能进行对比。研究结果表明:中碳钢高拉速连铸用保护渣相比低拉速连铸用保护渣需要有更好的润滑性能,1 300℃时的黏度应低于0.086 Pa·s(拉速3.5 m/min);因高速拉坯,结晶器内壁与初始钢坯之间的热流大大增加,为避免过快的传热导致铸坯缺陷则需采用控热能力更均匀更强的保护渣。  相似文献   

16.
连铸生产高强钢时,如高铝相变诱发塑性钢(简称TRIP钢),传统的硅钙保护渣由于SiO2的急剧减少而表现出了固有的不稳定性。保护渣中二氧化硅的减少导致氧化铝增加约30%,这种变化的程度和不稳定性会影响到保护渣的物理性能,从而影响结晶器散热、保护渣的消耗量及保护渣在结晶器内的行为。以上因素综合作用,导致铸坯表面产生横向和纵向凹陷及裂纹。由于这种铝钙保护渣在连铸生产高铝TRIP钢时,不易发生反应而备受人们的关注。在安赛乐米塔尔美国公司(AM-USA)的两家研发中心—东芝加哥中心和施托尔贝格进行了这两种保护渣的生产试验,研究相对于传统的硅钙保护渣,新保护渣对生产高铝TRIP钢的影响。利用光学显微镜、阴极发光显微镜和扫描电子显微镜来检查结晶器中的渣膜层,以此来确定渣层中沉淀物的性质和分布。铝钙保护渣的使用使钢/渣间的化学反应有了明显的变化,改善了铸坯的表面质量。  相似文献   

17.
针对高拉速下薄板坯连铸结晶器内的液面卷渣问题,建立了1∶1水力学模型,采用水/真空泵油模拟钢/保护渣介质,研究了连铸拉速、水口插入深度、保护渣黏度对漏斗形结晶器内液渣层变化及卷渣行为的影响。结果表明,随着拉速提高,结晶器内液面波高升高,液面高度自窄边向水口方向逐渐降低,液渣层厚度相应由薄变厚,导致结晶器窄边附近钢液裸露;结晶器内窄边至水口之间1/2处波高变化较大、液面流速最大、易发生剪切卷渣。在试验条件下,采用增加水口插入深度、降低最高拉速、适当提高保护渣黏度等方法,使液面速度小于0.486 m/s的临界流速、液面波动指数F数小于5.45,可防止结晶器内产生剪切卷渣。然而,这些手段不能避免结晶器内水口附近的旋涡卷渣,这是因为薄板坯连铸钢通量大以及漏斗形结晶器和鸭嘴形水口容易形成负压旋涡造成的。  相似文献   

18.
连铸铁皮渣的分离与综合利用研究   总被引:1,自引:0,他引:1  
铁皮渣是连铸氧化铁皮与结晶器保护渣残渣的混合物。研究铁皮渣的分离方法,将铁皮渣分离成较纯的氧化铁皮与保护渣残渣。分离出的氧化铁皮可用于高炉生产,而且还可以用于生产铁粉和磁性材料;分离出的保护渣残渣可以作为保护渣的原料,在配入一定量的其他原料后,制作的保护渣成分、熔化温度、黏度等理化性能都能满足生产要求。连铸铁皮渣得到最充分有效的综合利用。  相似文献   

19.
使用旋转柱体法,对四种型号的连铸结晶器保护渣进行了黏度测试,得到了黏度值随温度的变化关系。在板坯连铸机试用了各型号保护渣,取得了不同的使用效果。  相似文献   

20.
摘要:传统CaO-SiO2系保护渣在浇铸高锰高铝钢时,渣中SiO2易被钢中Al还原,造成保护渣成分改变和性能恶化,危害铸坯表面质量和连铸过程顺行。为了抑制钢 渣反应,旨在减少渣中氧化性组分的低反应性,CaO-Al2O3基渣系是重要选择方向。在评估高锰高铝钢凝固特性和传统反应性保护渣基础上,提出了低反应性保护渣基本性能要求,并采用单纯形法设计了CaO-Al2O3基保护渣系的试样组成。通过测试实验渣样的熔化特性和流动特性,获得了5组低反应性连铸保护渣熔化流动特性的成分控制区域。典型区域基本性能为:熔化温度(半球点温度)900~1100℃,1300℃的黏度0.1~0.2Pa·s,转折温度900~1150℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号