首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在Gleeble-3800热模拟试验机上进行高温压缩实验,研究0Cr16Ni5Mo低碳马氏体不锈钢在变形温度为900~1150℃、应变速率为0.01~10s-1条件下的热变形行为。采用双曲正弦模型确定了该材料的热变形参数随应变量的变化规律,建立了相应的热变形本构方程。根据动态材料模型建立并分析了其热加工图,同时观察了变形组织。结果表明:在热压缩过程中,流变应力随变形温度的升高而降低,随应变速率的升高而增加,变形条件对材料的组织结构有较大影响。材料热变形参数与应变量之间可采用四次函数关系式表示,并且具有很好的相关性,获得了该材料的最佳热变形工艺参数范围为:变形温度980~1150℃,应变速率0.01~0.2s-1。  相似文献   

2.
在Gleeble-3800热模拟试验机上对Nitronic60奥氏体不锈钢进行高温等温压缩实验,研究该材料在变形温度为950—1 200℃、应变速率为0.01—10 s-1、真应变量0.9等条件下的热变形行为,并观察了变形后的显微组织。研究结果表明:在热压缩过程中,流变应力随变形温度的升高而降低,随应变速率的升高而增加;当变形速率较低时,材料在变形温度范围内均发生了动态再结晶。采用双曲正弦模型建立了相应的热变形本构关系,其热变形激活能为425.542 k J/mol,高温压缩变形时,Z参数和流变应力方程分别为Z=εexp(425.542/RT)=3.495×1015[sinh(0.005 93σ)]5.55,ε=3.495×1015[sinh(0.005 93σ)]5.55exp[-525.524/(RT)]。  相似文献   

3.
热变形参数对LD7铝合金流动应力的影响   总被引:6,自引:1,他引:5  
在Gleeble-1500热模拟试验机上对LD7铝合金试样在变形程度为60%,变形温度为360-480℃、变形速率为0.01-1s^-1的条件下进行等温压缩试验,得到了不同应变、不同变形温度和应变速率下材料的真实应力,并利用古布金公式对实验结果进行了摩擦修正。研究结果表明:LD7铝合金是动态回复型合金;合金的流动应力随温度的升高而降低,最佳变形温度是400-450℃;该材料对应变速率具有很高的敏感性。  相似文献   

4.
6013铝合金热变形行为研究   总被引:7,自引:0,他引:7  
以6013铝合金为试验材料,采用热压缩镦粗法,在Gleeble-1500热模拟试验机上进行等温热压缩试验.结果表明:随变形速率增加和变形温度降低,合金的流变应力增加.随变形程度增加,流变应力先迅速增加到一峰值,然后缓慢下降到渐趋平稳,呈现明显动态再结晶特征.该合金的流变应力行为可用包含Arrhenius项的Zener-Hollomon参数来描述,其变形激活能Q为145.75kJ/mol.  相似文献   

5.
通过在Gleeble-1500D热模拟试验机上进行高温等温压缩试验,对Cu-0.4Cr-0.15Zr-0.04Y合金在应变速率为0.001~10s-1、变形温度为650~850℃、最大变形程度为50%条件下的流变应力行为进行了研究。分析了该合金在高温变形时的流变应力和应变速率及变形温度之间的关系,并研究了在热压缩过程中组织的变化。结果表明,热模拟试验中,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而下降,随应变速率提高而增大。从应变速率、流变应力和温度的相关性,得出了该合金高温热压缩变形时的应力指数(n)、应力参数(α)、结构因子(A)、热变形激活能(Q)和流变应力方程,变形温度对合金动态再结晶行为有强烈影响。  相似文献   

6.
为合理制定Si-Mn-MO系无碳化物贝氏体钢的生产工艺,利用GLEEBLE-3800热模拟试验机,在真空条件下开展了变形温度对贝氏体钢组织性能影响的热模拟试验.利用光学显微镜、透射电镜等设备,采用力学性能测试、微观组织观察等技术分析手段,对热模拟试样进行了组织观察和硬度检测分析,绘制了Si-Mn-MO系无碳化物贝氏体钢不同变形温度的动态CCT曲线,得出了变形温度对其组织和硬度的影响规律.结果表明,变形温度越低,无碳化物贝氏体钢的相变温度越低,组织越细小,先析铁素体越易析出,越有利于提高贝氏体钢的强硬性和韧塑性.  相似文献   

7.
在Gleeble-3800热模拟机上采用等温压缩实验研究5083铝合金在变形温度为523~723K、应变速率为0.01~10s-1、真应变为0~0.7条件下的高温流变应力行为。基于热传导对合金变形热效应的影响,对流变应力曲线进行了变形热修正。结果表明:热传导对变形过程中产生的温升影响不可忽略,其影响随着真应变的增加而更加显著;修正后的流变应力对峰值应力影响不大,但稳态流变应力软化趋势得到一定程度的减弱。建立了Zener-Hollomon参数的本构方程,可对5083铝合金在不同变形条件下的流变应力进行预测,温升修正后的流变应力值与本构方程的预测值吻合较好,平均相对误差仅为5.21%。  相似文献   

8.
在Gleeble-1500热模拟机上进行GH4049合金的热压缩实验,获得合金在温度为1090~1180℃、应变速率为0.1~50s-1条件下的应力-应变曲线。对峰值应力进行线性回归获得合金在不同变形条件下的材料常数,通过非线性回归建立合金的热变形本构方程。结果表明:随着变形温度升高,动态再结晶更加充分,晶粒尺寸变大;随着应变速率增加,晶粒组织趋于均匀,晶粒尺寸先减小后增大。  相似文献   

9.
目的 建立铸态GH4175合金的本构模型以预测材料变形过程中的流动应力,绘制其热加工图,用于优选铸态GH4175合金热变形的工艺参数.方法 采用Gleeble-3500热模拟压缩试验机对铸态GH4175合金试样在不同的变形温度和应变速率下进行热模拟压缩试验,获得流动应力-应变曲线.结果 GH4175合金的流动应力随变形...  相似文献   

10.
采用Gleeble-2000热模拟试验机,在950~1150℃的压缩温度、0.001~1s-1的应变速率条件下,对一种曲轴用34CrNiMo6高强结构钢进行高温压缩变形试验,获得了该材料的流变应力曲线。通过分析研究数据,获得了该材料的热变形方程、热变形激活能、Z参数等相关数学模型;材料的流变应力曲线分析表明,34CrNiMo6钢的高温流变应力随变形温度的降低和应变速率的增加而逐渐增加;在变形过程中,变形温度和应变速率均对34CrNiMo6钢的动态再结晶和动态回复产生重要影响,升高变形温度或降低应变速率,均有利于变形过程中动态再结晶的发生,有助于变形材料的晶粒细化。  相似文献   

11.
目的研究Cu-Al_2O_3(0.68%)弥散强化铜合金高温圧缩塑性变形特性。方法在Gleeble-1500D热模拟试验机上,在变形温度为550,650,750,850,950℃,应变速率为0.01,0.1,1,5,10 s~(-1),变形量均为50%的条件下,对Cu-Al_2O_3(0.68%)铜合金进行热压缩变形试验。结果获得了不同热变形条件下的真应力应变曲线,建立了基于双曲正弦本构关系Arrhenius流动应力模型的本构方程,及基于动态材料模型(DMM)的热加工图。结论 Cu-Al_2O_3(0.68%)弥散强化铜合金高温压缩时,合金的热变形存在应变强化和稳态流变2个基本阶段,主要软化机制为动态再结晶。该合金的最佳变形区域温度为900~950℃,应变速率为0.2~2.8 s~(-1)。  相似文献   

12.
曲轴用34CrNiM06高强结构钢的热变形行为研究   总被引:2,自引:0,他引:2  
采用Gleeble-2000热模拟试验机,在950~1150℃的压缩温度、0.001~1s-1的应变速率条件下,对一种曲轴用34CrNiMo6高强结构钢进行高温压缩变形试验,获得了该材料的流变应力曲线.通过分析研究数据,获得了该材料的热变形方程、热变形激活能、Z参数等相关数学模型;材料的流变应力曲线分析表明,34CrNiMo6钢的高温流变应力随变形温度的降低和应变速率的增加而逐渐增加;在变形过程中,变形温度和应变速率均对34CrNiMo6钢的动态再结晶和动态回复产生重要影响,升高变形温度或降低应变速率,均有利于变形过程中动态再结晶的发生,有助于变形材料的晶粒细化.  相似文献   

13.
Cu-Ni-Si合金冷变形及动态再结晶行为研究   总被引:2,自引:1,他引:1  
研究了时效温度和时效时间对不同冷变形条件下Cu-2.0Ni-0.5Si合金性能的影响。在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,对Cu-2.0Ni-0.5Si合金在高温压缩变形中的流变应力行为进行了研究。结果表明,合金经900℃固溶,当变形量为40%,时效温度达到450℃时,其显微硬度达到201HV,导电率达到34%IACS。随变形温度升高,合金的流变应力下降,随应变速率提高,流变应力增大。在应变温度为700、800℃时,合金热压缩变形流变应力出现了明显的峰值应力,表现为连续动态再结晶特征。从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的变形激活能Q。  相似文献   

14.
在Gleeble-3500型热模拟试验机上对A100超高强度钢进行热压缩实验,获得了在变形温度为850~1200℃,应变速率为0.001~10s -1 以及变形程度为60%条件下的流变应力曲线,分析热压缩过程中摩擦和温升效应对流变应力的影响,修正了流变应力曲线;并在Arrhenius双曲正弦函数方程的基础上引入应变量参数构建了基于应变量耦合的唯象本构模型。结果表明:随着变形温度的降低或应变速率的增加,摩擦和温升效应对流变应力的影响逐渐显著;所建立的本构模型预测值与实验值的绝对平均相对误差为4.902%,相关系数为0.99,能够用于准确预测不同应变下的流变应力。  相似文献   

15.
GWN751K镁合金热压缩实验研究   总被引:2,自引:2,他引:0  
在Gleeble-1500D热模拟机上进行了单向热压缩试验,研究了GWN751K镁合金在变形温度为623-773K,应变速率为0.002-2s-1条件下热变形行为,变形量为60%.结果表明,在相同变形温度条件下,流变应力随变形速率的增加而上升,在相同的应变速率条件下,流变应力随着变形温度的升高而下降,计算出其平均激活能Q为228.61kJ/mol,应力指数n为4.2.根据材料动态模型,计算并分析了GWN751K合金的热加工图,并确定了合适的挤压加工条件为723K,0.01/s.通过对合金的挤压试验研究,验证了加工条件,挤压后的合金断裂强度为320MPa,延伸率为18%,较铸态合金有显著提高.  相似文献   

16.
以工业化生产的22Cr一5Ni-3Mo-N高合金钢连铸坯为研究对象,采用Gleeble-3800热模拟试验机完成了应变速率为0.1—50S-1、变形温度为900—1200℃条件下的高温压缩实验,分析其真应力一真应变曲线变化规律;利用实验数据,构建描述金属高温变形过程流变峰值应力的双曲正弦型、指数型和幂型本构方程;并利用...  相似文献   

17.
GCr15钢单道次压缩实验分析及三维模拟   总被引:1,自引:0,他引:1  
用Gleeble-3800热力模拟试验机对GCr15钢进行了单道次压缩实验,实验温度从950~1150℃变化,实验应变速率从0.1~10s-1变化.获得了实验钢种的应力一应变曲线、峰值应力模型、动态微观组织演变模型.借助MSC.Marc软件及其子程序代码,发展了一组三维有限元模型,研究了不同变形条件下的压缩过程,分析了试样的应变分布,并评估了变形参数对动态再结晶分数与晶粒大小的影响.所得晶粒尺寸模拟值与实验值吻合较好.  相似文献   

18.
研究了时效温度和时效时间对不同冷变形条件下Cu-2.0Ni-0.5Si-0.15Ag合金组织和性能的影响.在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,对Cu-2.0Ni-0.5Si-0.15Ag合金在高温压缩变形中的流变应力行为和组织变化进行了研究.结果表明:合金经900℃固溶,在经不同冷变形后时效,能获得较高的显微硬度与导电率,当变形量为80%,时效温度达到450℃时,其显微硬度达到220Hv,导电率达到41%IACS.热模拟实验中,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大,材料显微组织强烈受到变形温度的影响.  相似文献   

19.
实验材料为超高强度钢板BR1500HS,利用Gleeble-1500D热模拟实验机,对该材料在300~600℃温度区间内分别以0.03,0.3,0.6和1 s-1的应变速度进行高温拉伸变形实验,获得了该实验条件下流变应力的变化规律。结果表明,变形温度的降低和应变速率的增大都会使流变应力增大,但流变应力随变形量的增加达到峰值后逐渐趋于稳定。基于应力-应变数据构建BR1500HS同步淬火阶段Johson-Cook材料模型,依据此模型对热成形同步淬火阶段进行数值模拟,分析成形件及模具温度场的变化。在实验生产中,模具冷却系统使成形件在保压的同时温度迅速下降,实现其淬火过程,使材料发生马氏体相变,提高成形件的强度。为了实现超高强度钢的热成形同步淬火过程,采用同步冷却热成形系统,通过水流速度及保压时间,使零件马氏体分布均匀化。  相似文献   

20.
在Gleeble-1500热模拟机上进行了Ti6213合金热模拟压缩试验,变形温度范围为800-1050℃,应变速率范围为0.001-10 s-1,最大变形量为60%,并根据动态材料模型建立了加工图。结果表明,合金在高温变形时主要有2个合适的加工区域,一个是变形温度800-950℃,应变速率0.01 s-1以下区域;另一个在相变温度以下40℃内,应变速率10 s-1以上区域。在900-930℃和0.001 s-1的变形条件下,出现耗散率峰值为65%,高m值,S形应力和应变速率对数曲线的现象,合金表现出超塑特性。拉伸实验进一步表明,延伸率可达512%,组织为两相混合组织。另外,合金在800-930℃和大于0.01 s-1的条件下出现集中变形带,表现为局部流变特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号