首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An essential fatty acid (EFA) deficiency-like profile of fatty acids has been observed in HF-1 human skin fibro-blasts cultured at clonal densities in MCDB 110 and 0.4% fetal bovine serum (FBS). The profile was characterized by an accumulation of 16∶1n−7, 18∶1n−9, 20∶3n−9 and 22∶3n−9, a reduction of n−6 fatty acids and a reduction in total polyunsaturated fatty acids (PUFA). The fatty acid composition of sphingomyelin (SPH), phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylinositol (PI) and phosphatidylethanolamine (PE) was determined and, except for SPH, each displayed an EFA deficiency-like profile. The triene to tetraene ratio (20∶3n−9/20∶4n−6) ranged from 5.3 in PI to 0.9 in PE. In addition, the highest percentage of 20∶3n−9 was present in the PI and the highest percentage of 22∶3n−9, in PE. Other human fibroblasts (normal, transformed and at different population doubling number levels [PDL] were grown under the same conditions and were found to display triene to tetraene ratios (20∶3n−9/20∶4n−6) in total cellular lipids ranging from 0.7 to 4.5. The accumulation of 20∶3n−9 and 22∶3n−9 is due primarily to the existence of a basal nutrient medium (MCDB 110) that allows for the rapid clonal growth of human fibroblasts at reduced serum levels (0.4%). This culture procedure can be exploited to further elucidate various aspects of lipid metabolism in human fibroblasts. Fatty acids are abbreviated as number of carbon atoms: number of double bonds, followed by an n-number to designate the position of the first double bond with respect to the methyl carbon. Thus, Mead acid is 20∶3n−9 and its elongation product is 22∶3n−9.  相似文献   

2.
Rats were fed ethanol and a fat-free diet for 30 days to determine whether dietary fat is needed for the development of fatty liver. The severity of fatty liver was similar to that of rats fed an isocaloric diet with 35% fat. Small amounts (29 mg/day) of dietary arachidonic acid prevented alcoholic fatty liver. Rats fed either the alcohol (AF) or control (CF) fat-free diets developed essential fatty acid deficiency (EFAD) as measured by the triene/tetraene ratio of liver and plasma lipids. Rats fed arachidonic acid (AA, alcohol and CA, control diets) did not develop EFAD. Although EFAD alone did not cause the development of fatty liver, the combination of dietary ethanol and EFAD did. The ratios of 16∶1/16∶0 and 18∶1/18∶0 in liver lipids indicated that desaturase enzymes were less active and lipogenesis was reduced in rats fed the AA diet compared to those fed the AF diet. In contrast, stimulated lipogenesis appears to have been the cause of fatty liver in rats fed the AF diet. Presented at the XII International Congress of Nutrition, San Diego, CA, August 1981. Abbreviations: Diets are indicated as fat-free with ethanol (AF), fat-free without ethanol (CF), or similar diets with 0.9% of the calories as arachidonic acid with (AA) or without (CA) ethanol. The composition of these diets is discribed in the text and Table 1.  相似文献   

3.
I. M. Morrison  J. C. Hawke 《Lipids》1977,12(12):994-1004
The effect of increasing the linoleic acid (18∶2) content of milk fat on the composition and structure of the triglycerides (TG) was investigated. Protected sunflower seed supplement was added to the diet of a cow grazing on pasture, and the structure and composition of the milk fat compared with the milk fat from its monozygous twin which had been fed a control diet. The relative proportions of TG fractions of high, medium, and low molecular weight in the milk fat with elevated levels of 18∶2 (15.5% 18∶2) were 43.0, 19.5, and 37.5 moles %, respectively, compared with 36.1, 19.7, and 44.2 moles %, respectively, in the milk fat from the cow fed the control diet. Separation of these three TG fractions of each milk fat into TG classes with different levels of unsaturation showed that the milk fat with elevated levels of 18∶2 contained higher proportions of diene, triene, and tetraene TG and correspondingly lower proportions of saturated and, to a lesser extent, monoene TG. The saturated and monoene TG from the two milk fats had similar fatty acid compositions. However, the diene TG of the 18∶2-rich milk fat included high proportions of the combination of 18∶2 with two saturated fatty acids (FA) which are minor constituents of normal milk fats. Likewise, the triene TG reflected the presence of 18∶2 in combination with 18∶1 and a saturated FA.  相似文献   

4.
Male weanling rats were fed semi-synthetic diets high in saturated fat (beef tallow) vs high in linoleic acid (safflower oil) with or without high levels of α-linolenic acid (linseed oil) for a period of 28 days. The effect of feeding these diets on cholesterol content and fatty acid composition of serum and liver lipids was examined. Feeding linseed oil with beef tallow or safflower oil had no significant effect on serum levels of cholesterol. Serum cholesterol concentration was higher in animals fed the safflower oil diet than in animals fed the beef tallow diet without linseed oil. Feeding linseed oil lowered the cholesterol content in liver tissue for all dietary treatments tested. Consumption of linseed oil reduced the arachidonic acid content with concomitant increase in linoleic acid in serum and liver lipid fractions only when fed in combination with beef tallow, but not when fed with safflower oil. Similarly, ω3 fatty acids (18∶3ω3, 20∶5ω3, 22∶5ω3, 22∶6ω3) replaced ω6 fatty acids (20∶4ω6, 22∶4ω6) in serum and liver lipid fractions to a greater extent when linseed oil was fed with beef tallow than with safflower oil. The results suggest that the dietary ratio of linoleic acid to saturated fatty acids or of 18∶3ω3 to 18∶2ω6 may be important to determine the cholesterol and arachidonic acid lowering effect of dietary α-linolenic acid.  相似文献   

5.
Weanling male spontaneously hypertensive (SHR) and normotensive (WKY) rats were maintained on a fat-free semisynthetic diet and killed at various intervals. The effects of fat-depletion on the appearance of essential fatty acid (EFA) deficiency symptoms, the progressive changes of major fatty acids in plasma, liver, heart, and kidney phospholipids (PL), and in skin total lipids were compared between these two strains. After five weeks on the diet, the slower growth and the appearance of EFA deficiency symptoms became evident in SHR. In general, fat-depletion reduced the levels of n−6 fatty acids, whereas it increased those of 20∶3n−9. However, the fat-depletion induced reduction of 18∶2n−6 in heart PL and 20∶4n−6 in kidney, while the elevation of 20∶3n−9 in plasma, heart, and kidney PL were greater in WKY than in SHR. As a result, the elevation of biochemical EFA deficiency index—20∶3n−9/20∶4n−6 ratio—was greater in WKY than in SHR. In comparison with WKY, the concentrations of liver triacylglycerols and the weights of adipose tissues in SHR were reduced to a greater extent, indicating an active catabolism of triacylglycerols in SHR. This study suggests that the earlier appearance of morphological symptoms of EFA deficiency in SHR was not associated with the reducing n−6 EFA levels or with an elevation of triene/tetraene ratio, but possibly to a reduced supply of n−6 EFA for skin prostaglandin synthesis.  相似文献   

6.
The microsomal desaturase activity of human cancerous and noncancerous tissues was measured in vitro using 1-14C,-11,14-eicosadienoic and 1-14C-oleic acids as substrates. Tissues used were a case of ovarian cancer, a urinary bladder cancer, a rectal cancer, and a nonspecific colonic ulcer with appropriately normal tissues. When 11,14–20∶2 was used as substrate, radioactive tetraene and triene were produced. The tetraene was identified by radio gas chromatography as arachidonic acid (5,8,11,14–20∶4), and the triene had a retention time of 5,11,14–20∶3. Thus, the possibility arises that a Δ8 desaturase was involved. In the Δ6 desaturase, with the urinary bladder  相似文献   

7.
Diets rich in meat are claimed to contribute to the high tissue arachidonic acid (20∶4ω6) content in people in Westernized societies, but there are very few direct data to substantiate this assertion. Because meat contains a variety of long-chain polyunsaturated fatty acids (PUFA) that are susceptible to oxidation, we initially examined the effect of cooking on the long-chain PUFA content of beef, and then determined the effect of ingestion of lean beef on the concentration of long-chain PUFA in plasma phospholipids (PL). First, we examined the effect of grilling (5–15 min) and frying (10 min) different cuts of fat-trimmed lean beef on the long-chain PUFA content. Second, we investigated the effect of including 500 g lean beef daily (raw weight) for 4 wk on the fatty acid content and composition of plasma PL in 33 healthy volunteers. This study was part of a larger trial investigating the effect of lean beef on plasma cholesterol levels. In the first two weeks, the subjects ate a very low-fat diet (10% energy) followed by an increase in the dietary fat by 10% each week for the next 2 wk. The added fat consisted of beef fat, or olive oil (as the oil or a margarine) or safflower oil (as the oil or a margarine). This quantity of beef provided 60, 230, 125, 140 and 20 mg/d, respectively, of eicosatrienoic acid (20∶3ω6), 20∶4ω6, eicosapentaenoic acid (20∶5ω3), docosapentaenoic acid (22∶5ω3) and docosahexaenoic acid (22∶6ω3). Grilling for 10–15 min, but not frying, of the fat-trimmed lean beef resulted in 20–30% losses of the 20 and 22 carbon PUFA. The consumption of the lean beef during the first two-week period, when there was a very low level of dietary fat, was associated with significant increases in the proportion and concentration of 20∶3ω6, 20∶4ω6, 20∶5ω3 and 22∶5ω3 in the plasma PL and a significant decrease in the proportion and content of 18∶2ω6. The addition of beef fat or olive oil to the diets containing lean beef did not alter the plasma PL fatty acid profile compared with the very low-fat diet, whereas the addition of safflower oil maintained the significant increases in 20∶4ω6 and 22∶5ω3 but led to decreases in 18∶3ω3 and 20∶5ω3 compared with the very lowfat diet. The results showed that diets rich in lean beef increased the 20∶3ω6, 20∶4ω6 and the long-chain ω3 PUFA levels in the plasma PL. A high level of linoleic acid in diets rich in lean beef prevented the rise in the plasma level of 20∶3ω6 and 20∶5ω3, two fatty acids known to antagonize the effects of 20∶4ω6 on platelet aggregation.  相似文献   

8.
Comparative effects of feeding dietary linoleic (safflower oil) and α-linolenic (linseed oil) acids on the cholesterol content and fatty acid composition of plasma, liver, heart and epididymal fat pads of rats were examined. Animals fed hydrogenated beef tallow were used as isocaloric controls. Plasma cholesterol concentration was lower and the cholesterol level in liver increased in animals fed the safflower oil diet. Feeding the linseed oil diet was more effective in lowering plasma cholesterol content and did not result in cholesterol accumulation in the liver. The cholesterol concentration in heart and the epididymal fat pad was not affected by the type of dietary fatty acid fed. Arachidonic acid content of plasma lipids was significantly elevated in animals fed the safflower oil diet and remained unchanged by feeding the linseed oil diet, when compared with the isocaloric control animals fed hydrogenated beef tallow. Arachidonic acid content of liver and heart lipids was lower in animals fed diets containing safflower oil or linseed oil. Replacement of 50% of the safflower oil in the diet with linseed oil increased α-linolenic, docosapentaenoic and docosahexaenoic acids in plasma, liver, heart and epididymal fat pad lipids. These results suggest that dietary 18∶2ω6 shifts cholesterol from plasma to liver pools followed by redistribution of 20∶4ω6 from tissue to plasma pools. This redistribution pattern was not apparent when 18∶3ω3 was included in the diet.  相似文献   

9.
Rats were fed diets high in either saturated fat (beef tallow) or α-linolenic acid (linseed oil) or eicosapentaenoic and docosahexaenoic acids (fish oil) with or without 2% cholesterol supplementation. Consumption of linseed oil and fish oil diets for 28 days lowered arachidonic acid content of plasma, liver and heart phospholipids. Addition of 2% cholesterol to diets containing beef tallow or linseed oil lowered 20∶4ω6 levels but failed to reduce 20∶4ω6 levels when fed in combination with fish oil. Feeding ω3 fatty acids lowered plasma cholesterol levels. Addition of 2% cholesterol to the beef tallow or linseed oil diet increased plasma cholesterol concentrations but not when fish oil was fed. Feeding the fish oil diet reduced the cholesterol content of liver, whereas feeding the linseed oil diet did not. Dietary cholesterol supplementation elevated the cholesterol concentration in liver in the order: linseed oil > beef tallow > fish oil (8.6-, 5.5-, 2.6-fold, respectively). Feeding fish oil and cholesterol apparently reduced 20∶4ω6 levels in plasma and tissue lipids. Fish oil accentuates the 20∶4ω6 lowering effect of dietary cholesterol and appears to prevent accumulation of cholesterol in plasma and tissue lipids under a high dietary load of cholesterol.  相似文献   

10.
Thirteen-day old rats were given intracranial injections of 1-14C linolenic acid (allcis 9,12,15 octa decatrienoic acid) and were sacrificed after 8 hr. Analysis of brain fatty acids showed that 16∶0, 18∶0, 18∶1, 18∶3, 20∶3, 20∶4, 20∶5, 22∶5, and 22∶6 were labeled. The total fatty acid methyl esters were separated into classes according to degree of unsaturation on a AgNO3∶SiO2 impregnated plate. The bands were scraped off and the eluted fatty acids were first analyzed by radiogas liquid chromatography and then subjected to reductive ozonolysis to determine double bond position. The saturated acids, 16∶0, and 18∶0, as well as the mono-unsaturated 18∶1, must have been formed from radioactive acetate produced by β oxidation of the injected linolenate. Among the polyunsaturated fatty acids, the triene fraction was characterized and identified as 18∶3 ε3 (Δ9,12,15), the starting material, and 20∶3 ω3 (Δ11,14,17); the tetraene fraction was identified as 20∶4 ω3 (Δ8,11,14,17); the pentaene fraction was identified as 20∶5 ω3 (Δ5,8,11,14,17) and 22∶5 ω3 (Δ7,10,13,16,19); and, finally, the hexaene fraction was shown to be 22∶6 ω3 (Δ4,7,10,13,16,19). The biosynthesis of these ω3 family fatty acids in the brain in situ is discussed.  相似文献   

11.
Omega-3 fatty acids influence the function of the intestinal brush border membrane. For example, the omega-3 fatty acid eicosapentaenoic acid (20∶5ω3) has an antiabsorptive effect on jejunal uptake of glucose. This study was undertaken to determine whether the effect of feeding α-linolenic acid (18∶3ω3) or EPA plus docosahexaenoic acid (22∶6ω3) on intestinal absorption of nutrients was influenced by the major source of dietary lipid, hydrogenated beef tallow or safflower oil. Thein vitro intestinal uptake of glucose, fatty acids and cholesterol was examined in rats fed isocaloric diets for 2 weeks: beef tallow, beef tallow + linolenic acid, beef tallow + eicosapentaenoic acid/docosahexaenoic acid, safflower oil, safflower oil + linolenic acid, or safflower oil + eicosapentaenic acid/docosahexaenoic acid. Eicosapentaenoic acid/docosahexaenoic acid reduced jejunal uptake of 10 and 20 mM glucose only when fed with beef tallow, and not when fed with safflower oil. Linolenic acid had no effect on glucose uptake, regardless of whether it was fed with beef tallow or safflower oil. The jejunal uptake a long-chain fatty acids (18∶0, 18∶2ω6, 18∶3ω3, 20∶4ω6, 20∶5ω3 and 22∶6ω3) and cholesterol was lower in salfflower oil than with beef tallow. When eicosapentaenoic acid/docosahexaenoic acid was given with beef tallow (but not with safflower oil), there was lower uptake of 18∶0, 20∶5ω3 and cholesterol. The demonstration of the inhibitory effect of linolenic acid or eicosapentaenoic acid/docosahexaenoic acid on cholesterol uptake required the feeding of a saturated fatty acid diet (beef tallow). These changes in uptake were not explained by differences in the animals’ food intake, body weight gain or intestinal weight. Feeding safflower oil was associated with an approximately 25% increase in the jejunal and ileal mucosal surface area, but this increase was prevented by combining linolenic acid or eicosapentaenoic acid/docosahexaenoic acid with safflower oil. Different inhibitory patterns were observed when mixtures of fatty acids were present together in the incubation medium, rather than in the diet: for example, when 18∶0 was in the incubation medium with 20∶4ω6, the uptake of 20∶4ω6 was reduced, whereas the uptake was unaffected by 18∶2ω6 or 20∶5ω3. Thus, (1) the inhibitory effect of eicosapentaenoic acid/docosahexaenoic acid on jejunal uptake of glucose, fatty acids and cholesterol was influenced by the major dietary lipid, saturated (beef tallow) or polyunsaturated fatty acid (safflower oil); and (2) different omega-3 fatty acids (linolenic acid versus eicosapentaenoic acid/docosahexaenoic acid) have a variable influence on the intestinal absorption of nutrients.  相似文献   

12.
Smooth muscle cell cultures were obtained from the aortas of prepubertal guinea pigs. Cell proliferation in these cultures was inhibited by 8,11,14-eicosatrienoic acid, 5,8,11,14-eicosatetraenoic acid, and their prostaglandin E derivatives, PGE1 and PGE2. Prostaglandin F derivatives, PGF and PGF, stimulated cell proliferation. Cell proliferation was also inhibited by 5,8,11-eicosatrienoic acid and 11,14,17-eicosatrienoic acid. The monoene and diene precursors of the triene acids, 9-octadecenoic acid and 9,12-octadecadienoic acid, did not inhibit cell, proliferation. Indomethacin alone had no effect on cell proliferation, and indomethacin did not suppress the inhibition of cell proliferation with a triene acid. The antioxidant α-naphthol alone stimulated cell proliferation and suppressed prostaglandin E formation. α-Naphthol in the presence of either triene or tetraene acids also stimulated cell proliferation and suppressed prostaglandin E formation. The antioxidants butylated hydroxy toluene and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid either alone or in the presence of triene and tetraene acids stimulated cell proliferation and had no effect on prostaglandin E formation. Vitamin E either alone or in the presence of triene or tetraene acids stimulated cell proliferation and had no effect on prostaglandin E formation. More prostaglandin E was formed from 8,11,14-eicosatrienoic acid than from 5,8,11,14-eicosatetraenoic acid in the presence of antioxidants. Vitamin E suppressed the inhibitory effects of both PGE2 and palmitic acid on cell proliferation. The cyclic nucleotide phosphodiesterase inhibitors, caffeine and papaverine, suppressed the stimulatory effect of vitamin E on cell proliferation and enhanced the inhibitory effect of a triene acid on cell proliferation. Substrate and inhibitor specificities are consistent with the oxidative regulation of cell proliferation through the formation of hydroperoxy fatty acids. We propose that hydroperoxy fatty acids may regulate both cyclase and cyclic nucleotide phosphodiesterase enzymes through sulfhydryl-disulfide interconversions. We suggest that this regulatory mechanism may help to explain the acculation of 5,8,11-eicosatrienoic acid in essential fatty acid deficiency, the effects of antioxidants on cell proliferation, and one of the several effects of polyunsaturated fatty acids in proliferative disorders such as cancer and atherosclerosis.  相似文献   

13.
The effects of 5c, 11c, 14c-eicosatrienoic acid (20∶3BSO) and 5c, 11c, 14c, 17c-eicosatetraenoic acid (20∶4BSO), polyunsaturated fatty acids (PUFA) contained inBiota orientalis seed oil (BSO), on lipid metabolism in rats were compared to the effects of fats rich in linoleic acid (LA) or α-linolenic acid (ALA) under similar conditions. The potential effect of ethyl 20∶4BSO as an essential fatty acid also was examined in comparison with the ethyl esters of LA. ALA and γ-linolenic acid (GLA). BSO- and ALA-rich fat decreased the concentration of plasma total cholesterol, high density lipoprotein cholesterol, triglyceride and phospholipid as compared to LA-rich fat. BSO was more effective in reducing plasma cholesterol concentrations than was the ALA-rich fat. Dietary BSO markedly decreased the hepatic triglyceride concentration as compared to the LA-rich or ALA-rich fats. Aortic production of prostaglandin I2 tended to decrease in rats fed BSO or ALA-rich fat compared to those fed the LA-rich fat. Adenosine diphosphate-induced platelet aggregation was similar in the three groups. The proportion of arachidonic acid (AA) in liver phosphatidylcholine (PC) of rats fed BSO was lowest compared to that of rats fed ALA-rich or LA-rich fats. Administration of 20∶4BSO, ALA or GLA to essential fatty acid-deficient rats decreased the ratio of 20∶3n−9 to AA in liver PC to the same extent; administration of LA was more effective. The results indicate that the effects of specific PUFA contained in BSO on lipid metabolism are different from those of LA and ALA. It is also suggested that 20∶4BSO may exhibit some essential fatty acid effects.  相似文献   

14.
Cardiolipins (CL) have unique fatty acid profiles with generally high levels of polyunsaturated fatty acids, primarily 18∶2n−6, and low levels of saturated fatty acids. In order to study the effect of dietary fatty acid isomers on the fatty acid composition of cardiolipins, rats were fed partially hydrogenated marine oils (HMO), rich in 16∶1, 18∶1, 20∶1, and 22∶1 isomeric fatty acids, supplemented with linoleic acid at levels ranging from 1.9% to 14.5% of total fat. Although the dietary fats contained 33%trans fatty acids, the levels oftrans fatty acids in CL were below 2.5% in all organs. The fatty acid profiles of cardiolipins of liver, heart, kidney and testes showed different responses to dietary linoleic acid level. In liver, the contents of 18∶2 reflected the dietary levels. In heart and kidney, the levels of 18∶2 also parallelled increasing dietary levels, but in all groups fed HMO, levels of 18∶2 were considerably higher than in the reference group fed palm oil. In testes, the 18∶2 levels were unaffected by the dietary level of 18∶2 and HMO.  相似文献   

15.
Norflurazon is a herbicide known to inhibit carotene biosynthesis and linolenic acid biosynthesis in plants. In the present work, the effect of norflurazon on the metabolism of essential fatty acids was studied in isolated rat liver cells and in rat liver microsomes, incubated with [1-14C] labeled linolenic acid (18∶3, n−3), dihomogammalinolenic acid (20∶3, n−6) and eicosapentaenoic acid (20∶5, n−3). Norflurazon (0.1 mM, 1.0 mM) was found to inhibit essential fatty acid desaturation. The Δ6 desaturation is inhibited more efficiently than the Δ5 and Δ4 desaturation. The chain elongation of essential C18 fatty acids to their C20 and C22 homoglogs was not inhibited by norflurazon.  相似文献   

16.
The effect of diets high (15%) in saturated (beef tallow) or polyunsaturated (corn or cottonseed oil) fatty acids on the fatty acid composition of sphingomyelin from canine erythrocytes and platelets and sphingomyelin and neutral glycosphingolipids of swine erythrocytes was determined. Sphingolipids of platelets and erythrocytes from animals fed high levels of corn or cottonseed oil exhibited a dramatic alteration in their fatty acid composition, most notable of which was a 50% reduction in nervonic acid (24∶1ω9) as compared to levels observed in control or tallow fed animals. This decrease was compensated for by a quantitatively similar increase in a C24 dienoic acid. The long chain dienoic acid was isolated by silver nitrate thin layer chromatography and determined by analysis of its oxidation products to be Δ15, 18-tetracosadienoic acid (24∶2ω6). When the animals were fed the diets high in polyunsaturates, the 24∶2ω6 represented 13, 20, and 9% of the sphingomyelin fatty acids from canine erythrocytes, platelets, and swine erythrocytes, respectively, and 5% of the neutral glycosphingolipid fatty acids of swine erythrocytes. In contrast, the 24∶2ω6 represented less than 4% of the total cellular sphingolipid fatty acids in animals fed the control or high beef tallow diets. The 24∶1ω9 in the sphingolipids of the animals fed the polyunsaturated diet was roughly equal to that of 24∶2ω6, whereas in the sphingolipids of animals fed the control or saturated fat (beef tallow) diet, the 24∶1ω9 was twice these values. Since sphingomyelin is a membrane component, the increase in unsaturation (24∶2ω6) in its fatty acid moiety induced by dietary polyunsaturates may affect membrane fluidity and may alter membrane properties. Dr. Nelson’s current affiliation is with the Lipid Metabolism Branch, Division of Heart and Vascular Diseases, National Heart, Lung, and Blood Institute.  相似文献   

17.
Experimental diabetes may manifest itself in a defect in liver microsomal fatty acid desaturation and increased activity of glucose-6-phosphatase (G-6-Pase). The present study was designed to determine whether these changes could be normalized by a change in the dietary fat consumed. Control and streptozotocin-induced diabetic rats were fed nutritionally adequate diets which varied in fatty acid composition. Fatty acid analysis of liver microsomal phospholipids revealed that non-diabetic control animals fed saturated fat (beef tallow) or a diet high in ω3 fatty acids (fish oil) exhibited a significantly higher level of 18∶2ω6 and a lower level of 20∶4ω6 in the phosphatidylcholine and phosphatidylethanolamine fractions compared with diabetic animals. Control and diabetic animals fed the high linoleic acid diet had similar levels of 18∶2ω6 in the microsomal phosphatidylcholine and phosphatidylserine fractions. Microsomal G-6-Pase activity was higher in diabetic than in control animals. Activity of G-6-Pase was lower in microsomes of control animals fed the soybean oil or the fish oil diet, but was not significantly reduced in diabetic animals fed high polyunsaturated fats. Blood glucose levels were similar in control groups fed the different diets, but the plasma hemoglobin A1c level was lower in diabetic animals fed the soybean oil diet. Cholesterol and triglyceride levels were lower in diabetic animals fed the fish oil-based diet. The results suggest that dietary fat manipulation has the potential to change at least some of the abnormalities in the microsomal membrane in experimental diabetes.  相似文献   

18.
The developmental changes in the fatty acid composition of ethanolamine phosphoglycerides (EPG) and choline phosphoglycerides (CPG) were studied in the liver and brain of 18 newborn infants with gestational ages ranging from 20 to 44 wk. A small group of five newborns receiving total parenteral nutrition (TPN) with high doses of linoleic acid (18∶2ω6) was also studied and compared to controls of the same gestational age to look for effects on the developmental fatty acid patterns of liver and brain EPG and CPG. TPN with Intralipid 20% was given for 4–12 days, the total fat intake being 14.7–90 g (mean ±S.D.=47.1±29.8 g). The main developmental changes in the liver and brain of the control group were an increase in 22∶6ω3 (docosahexaenoic acid) at the end of gestation and a linear decrease in 20∶4ω6 (arachidonic acid) and 18∶1ω9 (oleic acid) in EPG and CPG. A very good correlation in the percent values of these fatty acids in the brain and liver tissues was obtained. Very significant changes in the fatty acid composition of liver EPG and CPG could be found in the infants receiving TPN with Intralipidmainly an increase in 18∶2ω6, a decrease in the linoleate elongation/desaturation to longer members of the series and a decrease in the 22∶6ω3 levels of liver EPG and CPG. In the brain, only an increase in the 18∶2ω6 value of CPG, not accompanied by any increase in the longer ω6 fatty acids, could be detected. Possible adverse effects of high doses of 18∶2ω6 on the tissue levels of long chain polyunsaturated fatty acids (PUFA), especially of 22∶6ω3, are discussed.  相似文献   

19.
J. R. Couch  A. E. Saloma 《Lipids》1973,8(12):675-681
The fatty acid composition and distribution in egg yolk triglycerides and phosphatides from the turkey, duck, prairie chicken, bobwhite quail, Japanese quail, and inbred-hybrid and midget mutant hens were determined after all species had been fed diets of similar fat and fatty acid content for 90 days. Total volk lipids were composed of ca. two-thirds neutral lipids and one-third polar lipids. The predominant fatty acids were palmitic and stearic. There were statistically significant differences in the my ristic, palmitic, palmitoleic, linoleic, and linolenic acids in the yolk triglycerides and in the proportion of 16∶1, 18∶0, 18∶2, arachidonic, docosanoic, docosahexaenoic, and tetracosanoic acids in the phosphatides among the various species. Linoleic acid predominantly was linked at the 2-position in the yolk triglycerides followed by the 20∶4 acid. The 18∶1 acid also was found preferentially at the 2-position. There was a low level of 18∶2 in the yolk triglycerides and phosphatides from the duck and an especially high level of 20∶4 acid in the phosphatides. The triglycerides in the species studied have essentially the same distribution of fatty acids in the 2-position. In all the species, the affinity for the fatty acids at the 2-position is in the following order: 18∶2=20∶4>18∶1 =18∶3>18∶0=16∶1>14∶0>16∶0 Differences observed among the various genera did not appear to follow taxonomic boundaries. The duck has an efficient system for converting 18∶2 into 20∶4 by elongation and desaturation. The prairie chicken apparently has a high requirement for 18∶2 but an inadequate system for its conversion into 20∶4.  相似文献   

20.
Because copper and iron have been reported to be essential cofactors in Δ9 desaturation of fatty acids, the effects of different dietary intakes of copper and iron on tissue fatty acids were studied. Male Long-Evans rats (ten per group) were fed diets containing adequate, deficient or excess copper or iron. On day 42 of the dietary regimen, the animals were killed and tissues and blood were removed for analysis of metals and fatty acids of phospholipids. Compared with the copper-adequate rats, the copper-deficient rats showed increased 18∶0 in liver and decreased 16∶1ω7 in liver, heart and serum. There were no differences for 16∶0 or 18∶1ω9. Intake of excess copper did not cause an increase in products of Δ9 desaturation. Comparisons between iron-deficient and iron-adequate rats showed that iron deficiency increased 18∶2ω6 in liver and serum and decreased 20∶4ω6 in serum only. Relative percentages of 16∶0, 18∶0, 16∶1ω7 and 18∶1ω9 in liver and serum phospholipids were similar for both groups. Intake of excess iron caused a decrease in 18∶2ω6; and 16∶0 and 18∶1ω9 were higher in the liver of the iron-excess group than the iron-deficient group. This study did not support the requirement for copper or iron in the Δ9 desaturation of fatty acids as expressed in phospholipids of liver, heart and serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号