首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
以楔状狭缝作为碳纤维分子筛的孔结构模型,采用GCMC法模拟了CH4、N2、CO2及其多相混合物在碳纤维分子筛上的吸附行为。探讨了单组分、双组分和三组分模拟气体在模型材料上的模拟吸附量随吸附压力的变化规律及吸附、分离特征。最大吸附压力下,3种组分在吸附材料上的最大吸附量分别为10.5、7.8、14.6mmol/g;CO2/N2、CH4/CO2和CH4/N2的最大分离系数分别为18.55、4.8和3.5。当输入气体摩尔浓度为1∶1∶1时,经碳纤维分子筛吸附分离后,CO2在吸附相中得到较好浓缩,而CH4和N2则在流动相中富集。  相似文献   

2.
常明  董宪姝  李宏亮  李剑波 《煤矿安全》2020,(1):176-180,186
基于密度泛函理论模拟方法,从原子层次上模拟计算4种典型矿井气体(CO、CO2、CH4及N2)对煤表面含氧官能团的吸附行为,探究4种气体对煤表面官能团的吸附机理。对4种气体对煤表面6种常见的官能团结构单元:酚羟基、羧基、羰基、醚键、醇羟基和烷基(Ph-OH、-COOH、-C=O、-O-、R-OH及R)吸附行为进行模拟,通过吸附能、吸附构型、前线轨道的计算分析;结果表明煤与4种气体的吸附强度存在CO2>N2>CO>CH4的关系,并且各气体分子在煤表面模型上各含氧官能团的吸附强弱顺序为:羧基>醇羟基>酚羟基>羰基>醚键>烷基。  相似文献   

3.
大量实测资料表明煤层瓦斯的组分中,除CH4外尚含有一定比例的N2和CO2。在间接法测定煤层瓦斯含量时,由于使用的是煤对纯CH4吸附实验所测定的吸附常数,因此在瓦斯组分中CH4浓度较低的情况下,间接法计算的煤层瓦斯含量会出现一定误差,而且CH4浓度愈低造成的误差愈大。对多组分气体的吸附情况进行了讨论,并提出了校正吸附瓦斯总量的计算方法。  相似文献   

4.
为了研究沁水盆地北部寺家庄太原组煤层甲烷 (CH 4)及二氧化碳(CO 2)的成因,对11口煤层气井排采气进行了化学组分和同位素测试,探讨了煤层CH 4及CO 2的成因及联系。结果表明:沁水盆地北部煤层CH 4平均体积分数为98.6%,CO 2为0.25%,N 2为1.07%;煤层CH 4碳同位素值介于-33.2‰~-40.8‰,平均值为-37.1‰,以煤热裂解成因为主,含有微生物CO 2还原成因CH 4,属于混合成因煤层气。沁北煤层CH 4碳同位素分馏起主导作用的是解吸-扩散-运移作用,储层浅部压力小,含轻碳同位素的CH 4优先解吸,经扩散运移至上部地层进而逸散到大气中。煤层CO 2的δ13C值为-15.9‰~+0.05‰,平均值为-8.6‰,为煤热演化初期或最近一次煤层抬升再沉降后煤中有机质热裂解产生,碳同位素较重的地方受地下水或微生物CO 2还原作用影响。煤层CO 2碳同位素随煤层埋藏变浅而变重,浅部煤层微生物CO 2还原作用强,使CO 2碳同位素变重。  相似文献   

5.
煤层处置二氧化碳模拟实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
为了研究CO2在煤层中的储存能力与置换驱替CH4特性,利用沁水煤田潞安矿区3号煤层大尺寸(100 mm×100 mm×200 mm)煤样,在确定应力约束条件下,开展了CO2在煤体中的吸附特性与其在含甲烷煤试样中的驱替实验,并对含甲烷煤和不含甲烷煤中CO2的储存特性做了对比分析。结果表明:在模拟真实地应力(围压=轴压=8 MPa)条件与0.5 MPa注入压力作用下,180min内试验煤样中储存CO2量达11.03 L,CO2在测试煤体中的渗透率随其吸附量的增加而减小;在既定的地应力条件和近于14.93 cm3/g煤层平均瓦斯含量条件下,当CO2注入压力由0.5 MPa提高到1.0 MPa时,CO2在试验煤体中的储存量可提高93.00%、储存率提高13.50%、相应CH4的解吸量提高了18.13%;在实验初期,CH4的解吸量高于CO2的吸附量,随注入过程的持续,煤体中CH4的解吸量逐渐趋于平缓且远小于CO2的吸附量;同等条件下,含CH4煤比不含CH4煤可多储存59.29%的CO2,储存率提高了12.51%。  相似文献   

6.
同一煤层软煤和硬煤物性参数特征不同,导致其对气体吸附行为存在差异。基于实验室测试模拟的方法,测试软硬煤体物性参数的差异性,搭建二元气体竞争吸附实验平台,研究软、硬煤体CO2和CH4竞争吸附特性规律。结果表明:除坚固性系数f值外,软硬煤基本参数相近,软煤微孔体积及孔表面积大于硬煤;单组分等温吸附,软煤吸附量大于硬煤,对CO2吸附量大于CH4,过程呈先增加后平缓趋势;煤对单一组分的CO2的吸附量最大,对CH4的吸附量最小,煤对CO2+CH42种混合气体总吸附量介于两者之间;随着吸附平衡压力增加,煤对混合气体的吸附曲线会逐渐远离煤对单一组分的CH4的吸附曲线,而不断接近CO2的吸附曲线。  相似文献   

7.
主动测压法测定煤层瓦斯压力中补偿气体的选择   总被引:1,自引:0,他引:1  
为选择合适的气体作为主动测压法测定钻孔煤层瓦斯压力中的补偿气体,从煤对CH4、CO2和N2的吸附性研究入手,证实了煤层对CH4和N2的吸附-解吸是可逆的,而对CO2的吸附解吸是不可逆的,并分析了CO2作为补偿气体对CH4的吸附-解吸平衡产生的影响,最终提出了N2更适合作为补偿气体。通过现场实践表明:CO2作为补偿气体测得的瓦斯压力存在一定的误差,误差可达0.05~0.20 MPa,而N2作为补偿气体时误差较小,能够较准确测得煤层原始瓦斯压力。  相似文献   

8.
施海珊  王煤  马睿 《煤炭学报》2012,37(9):1483-1487
采用Aspen Adsorption软件对CH4 和N2 分别为30%和70%低浓度煤层气的吸附过程进行模拟,得到吸附柱出口CH4 和N2 浓度随时间的变化关系和吸附柱轴向负载分布,考察压力、温度和传质系数对甲烷吸附过程和穿透曲线的影响。研究结果表明:对甲烷出口浓度的模拟值与实验值基本吻合,甲烷在吸附时间3 000 s时达到饱和,吸附量为6.75×10 -4 kmol/kg,约为氮气吸附量的2倍;甲烷穿透曲线随压力的增大后移,从100~500 kPa的穿透时间从392 s延至2 187 s。温度在273~323 K甲烷的穿透曲线基本不变;传质系数远小于1.000 s -1 时对吸附性能影响较大,传质系数为0.001 s -1 时的穿透时间约为0.010 s -1 时的两倍,但其大于1.000 s -1 后对穿透曲线几乎没有影响。  相似文献   

9.
甲烷及二氧化碳在不同煤阶煤内部的吸附扩散行为   总被引:4,自引:0,他引:4       下载免费PDF全文
采用容量法确定吸附量的方法,基于Fick第二定律,在吸附平衡压力约为1.4 MPa,温度为35~65 ℃的实验条件下,研究了甲烷(CH4)和二氧化碳(CO 2)在不同煤阶煤内部的吸附扩散行为。研究结果表明:Fick第二定律能够很好地描述CH 4及CO 2在不同煤阶煤内部的扩散行为;CH 4和CO 2有效扩散系数随着吸附温度的升高而增大,同时有效扩散系数和煤阶(利用镜质组最大反射率R o,max表征)之间呈现“U”形关系;相同条件下,同种煤样的CO 2有效扩散系数高于CH 4;CH 4和CO 2在不同煤阶煤内部的扩散主要受微孔内部的表面扩散控制。  相似文献   

10.
煤表面分子片段模型与瓦斯吸附分子力学模拟   总被引:1,自引:0,他引:1  
采用分子力学模拟的方法研究了煤表面分子片段模型与瓦斯气的吸附作用,主要研究了煤表面分子的苯环和侧链对CH4、CO2、N2和O2的吸附作用,得到了吸附能,计算出了在不同位置吸附的概率。研究结果表明,煤表面对CH4、N2和O2的吸附计算结果相似,主要是在苯环上吸附,还存在含N侧链位置的吸附作用;而煤表面对CO2的吸附计算明显的不同,主要在含N侧链位置和含N侧链在同一侧的苯环位置吸附,可能是由于NH与C=O形成了氢键,有待进一步研究。  相似文献   

11.
阜新煤田注二氧化碳提高煤层甲烷的研究   总被引:3,自引:1,他引:2  
针对阜新煤田煤储层的地质特征,选取了刘家煤层气勘探区和东梁矿2个地点,开展了注二氧化碳置换煤层甲烷的试验模拟研究.试验结果表明,二氧化碳的吸附能高于甲烷的吸附能,它可以将甲烷从煤的微表面置换出来,从而提高煤层甲烷的采出率.在置换过程中总是吸附能力弱的甲烷首先解吸,而吸附能力强的二氧化碳最后解吸,而且较高压力下的置换效果总比低压下的好.与东梁矿煤样相比,刘家煤样具有较强的吸附能力和较高的单位压降下的解吸率,但置换效率相差不大,主要原因是二者的二氧化碳对甲烷分离因子差别较小.注气试验时应该充分考虑注入压力点和气体注入量才能保证满意的置换效果.  相似文献   

12.
李树刚  白杨  林海飞  严敏  刘宝莉 《煤炭学报》2018,43(9):2476-2483
为进一步明确煤分子吸附多组分气体的热力学机制,应用巨正则系综蒙特卡洛(GCMC)模拟方法,从热力学角度研究了不同温度下等比例CH_4,CO_2,N_2多组分气体在煤分子模型中的吸附行为。研究表明:在晶胞内CH_4呈点状分布,CO_2呈簇状分布,N_2呈带状分布; 3种气体的吸附量、吸附热、吸附熵关系均为CO_2CH_4N_2,吸附势能CO_2CH_4N_2;吸附量与吸附热呈线性正相关关系,吸附热与温度无明显关系;煤分子吸附CH_4,N_2,CO_2的吸附势能与其吸附量成反比,吸附势能不仅受煤分子表面自由粒子色散力影响,也受吸附焓和吸附熵的影响;相同条件下,3种气体的吸附熵与吸附量和温度均呈负相关关系;吸附热力学参数能用来表征煤分子的吸附特性,从热力学角度证实煤分子吸附CO_2优于CH_4和N_2。  相似文献   

13.
梁卫国  张倍宁  黎力  贺伟 《煤炭学报》2018,43(10):2839-2847
在简述煤层气开采技术发展历程基础上,针对煤层气抽放开采率低的问题,提出了注能改性驱替开采煤层气技术,并从有效应力与热力学原理,能量平衡理论等方面进行了可行性分析。通过自主研发系列实验设备,对大尺寸、低渗透煤样进行了不同应力与温度条件下的渗透与驱替置换实验,揭示了注CO_2驱替开采煤层气的机理、规律与特征。研究结果表明:CO_2在煤体表面的吸附势大于CH_4,CO_2吸附引起的煤体表面自由能变化和吸附热均强于CH_4,注能(CO_2)有助于煤层气采收率提高;在一定的约束应力条件下,注入压力升高,CO_2吸附引起的煤体表面自由能变化和吸附热升高,同时作用在煤体上的有效应力降低,煤体的渗透性增强,CO_2驱替置换效果提高,反之,注入压力不变约束应力增大,有效应力增加,煤体渗透率降低,驱替置换效果变差;煤体对超临界态CO_2有很强的吸附性,在较大的有效应力和较低渗透率条件下,依然能保持较高的CO_2/CH_4置换率;提高注入CO_2温度,有助于部分吸附CH_4解吸,但同时煤体对CO_2吸附能力也减弱,导致CO_2/CH_4置换率有所降低。  相似文献   

14.
矿井瓦斯成分很复杂,其主要成分是甲烷(CH4),其次是二氧化碳(CO2)和氮气(N2),还含有少量或微量的重烃类气体(乙烷、丙烷、丁烷、戊烷等)、氢(H2)、一氧化碳(CO)、二氧化硫(SO2)、硫化氢(H2S)等。作为瓦斯检测,后面的各种气体成分形成干扰噪声。采用2次谐波调制的光纤激光实现在多成分气体的背景噪声中实现矿井瓦斯低浓度监测,实现早期预警。  相似文献   

15.
杨宏民  王兆丰  任子阳 《煤炭学报》2015,40(7):1550-1554
煤对气体的吸附有强弱之分,多元气体之间存在竞争吸附和置换解吸。他们之间会不会因为气体进入的先后顺序不同而产生差异呢?为此进行了煤对CH4-CO2混合气体的竞争吸附和CO2置换煤中CH4的置换吸附对比实验。实验表明,煤对CH4-CO2二元气体的竞争吸附与置换解吸结果是一致的,理论分析表明煤对气体的吸附解吸与气体进入煤体先后顺序和过程无关,只与吸附前后的状态有关。气体置换煤中CH4的规律为:混合气体中强吸附性气体含量越大,置换效率越高;置换压力越大置换效率越高。最后对煤层注气措施提出了建议:应先将煤层瓦斯压力降到安全范围再实施注气措施。  相似文献   

16.
张美红  吴世跃  李川田 《煤炭学报》2013,38(7):1196-1200
论述了注CO2开采煤层气质交换机理和煤系地层封存CO2意义,建立了注CO2开采煤层气的物理数学模型。采用饱和食盐水集气方法测定了表征解吸阻力大小的综合参数--综合传质系数α随浓度、煤变质程度、放散时间的变化规律。试验结果表明:α随煤粒吸附基质浓度的增大而增大;变质程度相同时,CH4的α随时间的衰减较CO2的α随时间的衰减慢;基质浓度相同时,煤变质程度越高,α越小,且对不同变质程度的煤岩,CH4的α大于CO2的α,即不同变质程度的煤岩对CO2的吸附能力都大于CH4。说明注气增加储层压力促进气体解吸置换,各种煤岩对CH4的解吸量大于对CO2的解吸量这一现象与煤的变质程度无关。因此,在不同变质程度煤层,甚至煤系地层中,注气开采煤层气与储存CO2技术在理论上都是可行的。  相似文献   

17.
注气驱替煤层气作用机理的探讨   总被引:1,自引:0,他引:1  
阐述了煤对气体单分子层吸附与多分子层吸附理论,将煤层对不同气体吸附进行比较,得出煤对不同气体吸附能力强弱,并阐述了注气驱替煤层气作用原理及其优点,从而证明了注气驱替煤层气的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号