首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了提高LiFePO4的电化学性能,用Mg2 对LiFePO4进行掺杂,以Li3PO4为锂源、Mg(OH)2为掺杂源,采用固相法合成锂离子电池正极材料Li1-xMgxFePO4(x=0.005、0.01、0.02和0.03).通过X射线衍射分析及电化学测试,研究了Mg掺杂对材料的结构和电化学性能的影响.实验研究表明,掺入少量的Mg2 ,可以减小晶胞体积,提高LiFePO4的循环性能和比容量.当Mg的掺入量为2 mol%时,以0.1C倍率充放电,Li0.98Mg0.02FePO4最大放电容量为123.6 mAh/g.  相似文献   

2.
采用固相反应法合成了锂离子电池正极材料Li0.97Re0.01FePO4(Re=Er,Y,Gd,Nd,La),采用X射线衍射、恒电流充放试验对掺杂试样的微观结构和电化学性能进行测试。试验结果表明:掺杂稀土金属离子对LiFePO4的晶体结构没有影响,与LiFePO4相比,掺杂Er3+,Y3+,Gd3+的试样具有优良的循环性能和倍率性能,而掺杂Nd3+,La3+的试样的循环性能和倍率性能较差。掺杂试样中,Li0.97Gd0.01FePO4的电化学性能最佳,在C/10和1C(1C=120 mA.g-1)倍率下放电容量均最大。  相似文献   

3.
采用固相反应法合成了锂离子电池正极材料Li0.97Re0.01FePO4(Re=Er,Y,Gd,Nd,La),采用X射线衍射、恒电流充放试验对掺杂试样的微观结构和电化学性能进行测试。试验结果表明:掺杂稀土金属离子对LiFePO4的晶体结构没有影响,与LiFePO4相比,掺杂Er^3+,Y^3+,Gd^3+的试样具有优良的循环性能和倍率性能,而掺杂Nd^3+,La^3+的试样的循环性能和倍率性能较差。掺杂试样中,Li0.97Re0.01FePO4的电化学性能最佳,在C/10和1C(1C=120mA·g^-1)倍率下放电容量均最大。  相似文献   

4.
采用碳热还原法合成橄榄石型LiFePO4正极材料,并用溶胶-凝胶法在其表面修饰La2O3颗粒。通过X射线衍射(XRD)、场发射扫描电镜(FE-SEM)等方法对表面修饰前后的LiFePO4进行表征,分析了表面修饰前后LiFePO4物理性质的变化,并进行了恒流充放电测试和循环伏安测试,研究了表面修饰对LiFePO4电化学性能的影响。结果表明,La2O3表面修饰没有改变LiFePO4材料的晶体结构,LiFePO4材料经La2O3修饰后,其电化学性能显著改善。  相似文献   

5.
采用水热法制备锂离子电池正极材料LiFePO4,研究了制备工艺条件对LiFePO4结构和电化学性能的影响.采用扫描电镜及X射线仪对制备材料进行了表征,采用恒流充放电测试研究材料的电化学性能.实验验结果证明,采用水热法制备LiFePO4的适宜条件为:反应物摩尔比为Li:Fe=3:1,反应温度120℃,反应时间10 h,干燥时间为6 h.  相似文献   

6.
为了获得颗粒均匀、细小和优异电化学性能的LiFePO4,采用不同碳热还原方法(固相反应中用乙炔黑作碳源,固相反应中用蔗糖作碳源,半固相反应中用蔗糖作碳源)合成了LiFePO4。制备样品分别用XRD和SEM进行表征,通过充放电试验测试电化学性能。结果显示:半固相碳热还原反应制得的样品颗粒粒径最小、电化学性能最佳。在2.0~4.0V(Vs.Li)范围内、15mA·g-1电流密度下放电,首次放电比容量高达到162mAh·g-1,是理论容量的95.3%;该样品也具有稳定的循环行为。半固相碳热还原法是制备锂离子电池正极材料LiFePO4一种有潜力的合成方法。  相似文献   

7.
Mn2+掺杂对LiFePO4正极材料结构、性能及嵌锂动力学的影响   总被引:1,自引:1,他引:0  
为了改善橄榄石型LiFePO4正极材料的性能,采用高温固相法合成了Mn掺杂的LiMnxFe1-xPO4(x=0,0.10,0.25,0.40,0.50)材料.采用X射线粉末衍射、扫描电子显微镜、充放电测试、循环伏安和电化学阻抗谱研究了材料的结构、电化学性能和锂离子嵌脱动力学.结果表明,锰掺杂的LiFePO4样品颗粒分布比较均匀,具有较小的平均粒径和窄的粒度分布,LiMnxFe1-xPO4是纯相的橄榄石结构.在不同倍率下,LiMn0.4Fe0.6PO4具有最高的放电容量和最好的动力学性能.Mn的掺杂提高了LiFePO4材料的可逆性、锂离子扩散系数和放电容量,减小了电荷转移电阻,进而提高了其动力学性能.  相似文献   

8.
以Li2CO3,FeC2O4·2H2O和NH4 H2 PO4为前驱体,分别以葡萄糖和葡萄糖/乙炔黑为碳源,利用微波加热合成了LiFePO4/C正极材料.用X射线粉末衍射(XRD)和扫描电镜(SEM)对材料进行了表征,用四探针法测定了材料的电导率.研究了碳源与微波温度对材料微结构和电化学性能的影响,发现由于乙炔黑的协同效应,用双碳源在600℃反应即可得到最佳电化学性能的LiFePO4/C,而仅用葡萄糖作碳源反应需要在较高温度(如700℃)下进行.  相似文献   

9.
基于不同碳源的LiFePO4/C的合成及电化学性能研究   总被引:3,自引:0,他引:3  
以不同有机碳(月桂酸、葡萄糖和柠檬酸)为碳源合成了橄榄石型LiFePO4/C锂离子电池复合正极材料.研究了不同碳源对LiFePO4/C复合材料的结构、形貌及其电化学性能的影响.结果表明用不同碳源合成的LiFePO4/C复合材料的形貌及颗粒大小不同,影响其电化学性能.其中以葡萄糖作为碳源合成的复合正极材料粒径细小,分布均匀,具有最好的电化学性能,在0.1 C放电电流下,首次放电比容量达143.1 mAh/g,接近LiFePO4的理论比容量(170 mAh/g).  相似文献   

10.
以Li2CO3,FeC2O4·2H2O和NH4H2PO4为前驱体,分别以葡萄糖和葡萄糖/乙炔黑为碳源,利用微波加热合成了LiFePO4/C正极材料.用X射线粉末衍射(XRD)和扫描电镜(SEM)对材料进行了表征,用四探针法测定了材料的电导率.研究了碳源与微波温度对材料微结构和电化学性能的影响,发现由于乙炔黑的协同效应,用双碳源在600℃反应即可得到最佳电化学性能的LiFePO4/C,而仅用葡萄糖作碳源反应需要在较高温度(如700℃)下进行.  相似文献   

11.
系统介绍锂离子电池正极材料LiFePO4的结构、工作原理及其优缺点。针对LiFePO4存在的缺陷,从添加导电剂前驱体、掺杂改性及控制合成粒度等改性方面阐述了LiFePO4的研究现状,并提出了未来该材料的研究方向。  相似文献   

12.
改进Sol-gel法合成LiFePO4正极材料及其电化学性能   总被引:2,自引:0,他引:2  
为了获得颗粒均匀、细小和电化学性能优异的LiFePO4, 采用sol-gel方法并添加表面活性剂聚乙二醇(PEG)制备LiFePO4/C。制备样品分别用XRD和SEM进行表征,通过充放电和循环伏安测试电化学性能。结果表明,nPEG/nLFP=1∶1、600 ℃制得样品颗粒均匀,平均粒径约为100 nm,在2.0~4.0 V(vs. Li)范围内,15 mA/g电流密度下放电,首次放电比容量为158 mAh/g,是理论容量的92.9%。制备样品展现良好的倍率性能和循环性能。  相似文献   

13.
用高温固相反应法制备Cu微粒包覆的锂离子电池正极材料Cu/LiFePO4。采用X射线衍射、场发射扫描电镜对材料的物相结构和颗粒形貌进行分析和观察,采用恒流充放电、慢扫描循环伏安法和电化学阻抗谱法测试材料的电化学性能。结果表明,Cu微粒包覆使复合材料颗粒分散更均匀,结晶更明显;Cu/LiFePO4(n(Cu)∶n(Li)=1∶15)正极材料首次放电比容量最高为142.8 mA.h/g,与纯LiFePO4正极材料的对应值151.7 mA.h/g相比有所下降;虽然Cu微粒的加入在一定程度上能够提高材料的电子导电率,但在第一周充电时Cu即发生不可逆氧化,导致该复合材料具有较低的放电比容量和较大的首次不可逆容量损失。  相似文献   

14.
采用共沉淀法合成了锂离子正极材料LiFePO4,考察了不同合成条件对材料结构及性能的影响.研究结果表明:通过碳包覆改性后,LiFePO4的容量可明显提高,SiO2的掺杂对LiFePO4的结构没有影响.同时讨论了上述两种改性方法对材料性能的影响机制.  相似文献   

15.
锂离子电池正极材料LiNixFe1-xPO4的制备及其性能   总被引:2,自引:0,他引:2  
为提高锂离子电池正极材料LiFePO4的充放电性能,用Ni对LiFePO4进行掺杂,研究了Ni掺杂量对LiFePO4性能的影响,在LiNixFe1-xPO4(x=0,0.01,0.03,0.05,0.10)材料中,LiNi0.03Fe0.97PO4具有比LiFePO4更好的电化学性能,用80mA/g的电流进行充放电时,第2次放电比容量为133.278mAh/g,循环20次后为127.655mAh/g.  相似文献   

16.
采用"原位合成模板法"以硅酸为模板、硝酸钴为钴源,制备了中孔Co3O4材料,研究了模板和硝酸钴的质量比对所制得的中孔Co3O4材料的微观结构和电化学性能的影响.用N2等温吸附—脱附和X线衍射测试了其微观结构.结果表明,随着模板质量比的增加,制备得到的Co3O4材料的比表面积增加,中孔结构越明显,结晶性逐渐降低.在6 mol/L氢氧化钾电解液中测试了其电化学性能,最优质量比制得的样品在5 mV/s扫描速率下的比电容达329 F/g.即使在较高扫描速率下,该质量比的中孔Co3O4比电容依然具有很好的保持性.  相似文献   

17.
为了制备锂离子电池正极材料球形LiFePO4,以曲拉通-100(Tx-100)作表面活性剂,用超声波法制备了LiFePO4的前驱体材料μm级球形Li3PO4粉末,并用X射线衍射进行了表征.研究了各种因素对Li3PO4颗粒形态的影响,得到了超声波法制备球形Li3PO4粉末的适宜条件:反应温度为35℃,Li+的浓度为0.6 mol/L,Tx-100的质量百分数为10%,超声波作用时间为5 min.  相似文献   

18.
提出了一种采用共沉淀法合成镁掺杂的锂离子正极材料LiFePO4的新方法,研究了合成条件,采用XRD,SEM,循环伏安测定,电化学阻抗谱分析,以及充放电测试对合成的材料作了表征分析.结果表明,采用共沉淀合成方法可以获得性能良好的LiFePO4;Mg^2+掺杂对LiFePO4结构没有产生明显的影响,但掺杂量的大小对LiFePO4的放电性能有较大影响.  相似文献   

19.
随着能源的需求,锂离子电池受到了广泛重视。橄榄石结构的LiFePO4由于比容量高、热稳定性好、成本低、无污染等优点,成为一类最具发展前景的锂离子电池正极材料。从材料制备和改性等方面综述了近年来国内外合成LiFePO4及其掺杂改性的研究状况,包括高温固相法、碳热还原法、溶胶-凝胶法、水热法、碳包覆法、金属离子掺杂法及粒径尺寸控制等技术,并阐述了各自的特点。  相似文献   

20.
为制备CuFeMnO_4/PAN复合纤维,分别用共沉淀-高温煅烧工艺和共沉淀-水热合成工艺制备了CuFeMnO_4粉体,探讨了两种制备工艺所制得CuFeMnO_4颗粒尺寸的差异对其可纺性能的影响。将可纺的纳米CuFeMnO_4粉体和PAN混合采用静电纺丝技术制备复合纤维,利用XPS、XRD、SEM、UV-Vis-NIR、TG和自组装的吸热性能测试装置进行了结构和性能表征。结果表明,共沉淀-水热法可制得粒径小于50nm、适合静电纺丝的CuFeMnO_4粉体,各元素主要以Cu~(2+)、Fe~(3+)、Mn~(3+)存在,同时存在少量Mn~(2+);与PAN纤维相比,复合纤维直径增大,且可见光区平均吸收率提高了73.18%,模拟太阳光源照射下的最高温度提高了31.4℃;TG分析发现复合纤维中由于强氧化性CuFeMnO_4粉体存在,加速了PAN热分解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号