首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Lower Miocene Jeribe Formation in northern and NE Iraq is composed principally of dolomitic limestones with typical porosity in the range of 10–24% and mean permeability of 30 mD. The formation serves as a reservoir for oil and gas at the East Baghdad field, gas at Mansuriya, Khashim Ahmar, Pulkhana and Chia Surkh fields, and oil at Injana, Gillabat, Qumar and Jambur. A regional seal is provided by the anhydrites of the Lower Fars (Fat'ha) Formation. For this study, oil samples from the Jeribe Formation at Jambur oilfield, Oligocene Baba Formation at Baba Dome (Kirkuk field) and Late Cretaceous Tanuma and Khasib Formations at East Baghdad field were analysed in order to investigate their genetic relationships. Graphical presentation of the analytical results (including plots of pristane/nC17 versus phytane/nCl8, triangular plots of steranes, tricyclic terpane scatter plots, and graphs of pristanelphytane versus carbon isotope ratio) indicated that the oils belong to a single oil family and are derived from kerogen Types II and III. The oils have undergone minor biodegradation and are of high maturity. They were derived from marine organic matter deposited with carbonate‐rich source rocks in suboxic‐anoxic settings. A range of biomarker ratios and parameters including a C28/ C29 sterane ratio of 0.9, an oleanane index of 0.2 and low tricyclic terpane values indicate a Late Jurassic or Early Cretaceous age for the source rocks, and this age is consistent with palynomorph analyses. Potential source rocks are present in the Upper Jurassic – Lower Cretaceous Chia Gara Formation and the Middle Jurassic Sargelu Formation at the Jambur, Pulkhana, Qumar and Mansuriya fields; minor source rock intervals occur in the Balambo and Sarmord Formations. Hydrocarbon generation and expulsion from the Chia Gara Formation was indicated by pyrolysate organic matter, palynofacies type (A), and the maturity of Gleichenidites spores. Oil migration from the Chia Gara Formation source rocks (and minor oil migration from the Sargelu Formation) into the Jeribe Formation reservoirs took place along steeply‐dipping faults which are observed on seismic sections and which cut through the Upper Jurassic Gotnia Anhydrite seal. Migration is confirmed by the presence of asphalt residues in the Upper Cretaceous Shiranish Formation and by a high migration index (Rock Eval SI / TOC) in the Chia Gara Formation. These processes and elements together form a Jurassic/Cretaceous – Tertiary petroleum system whose top‐seal is the Lower Fars (Fat'ha) Formation anhydrite.  相似文献   

2.
Crude oil samples (n = 16) from Upper Cretaceous reservoir rocks together with cuttings samples of Upper Cretaceous and Paleogene mudstone source rocks (n = 12) from wells in the Termit Basin were characterized by a variety of biomarker parameters using GC and GC‐MS techniques. Organic geochemical analyses of source rock samples from the Upper Cretaceous Yogou Formation demonstrate poor to excellent hydrocarbon generation potential; the samples are characterized by Type II kerogen grading to mixed Types II–III and III kerogen. The oil samples have pristane/phytane (Pr/Ph) ratios ranging from 0.73 to 1.27, low C22/C21 and high C24/C23 tricyclic terpane ratios, and values of the gammacerane index (gammacerane/C30hopane) of 0.29–0.49, suggesting derivation from carbonate‐poor source rocks deposited under suboxic to anoxic and moderate to high salinity conditions. Relatively high C29 sterane concentrations with C29/C27 sterane ratios ranging from 2.18–3.93 and low values of the regular steranes/17α(H)‐hopanes ratio suggest that the oils were mainly derived from kerogen dominated by terrigenous higher plant material. Both aromatic maturity parameters (MPI‐1, MPI‐2 and Rc) and C29 sterane parameters (20S/(20S+20R) and ββ/ (αα + ββ)) suggest that the oils are early‐mature to mature. Oil‐to‐oil correlations suggest that the Upper Cretaceous oils belongs to the same genetic family. Parameters including the Pr/Ph ratio, gammacerane index and C26/C25 tricyclic terpanes, and similar positions on a sterane ternary plot, suggest that the Upper Cretaceous oils originated from Upper Cretaceous source rocks rather than from Paleogene source rocks. The Yogou Formation can therefore be considered as an effective source rock.  相似文献   

3.
Crude oil in the West Dikirnis field in the northern onshore Nile Delta, Egypt, occurs in the poorly‐sorted Miocene sandstones of the Qawasim Formation. The geochemical composition and source of this oil is investigated in this paper. The reservoir sandstones are overlain by mudstones in the upper part of the Qawasim Formation and in the overlying Pliocene Kafr El‐Sheikh Formation. However TOC and Rock‐Eval analyses of these mudstones indicate that they have little potential to generate hydrocarbons, and mudstone extracts show little similarity in terms of biomarker compositions to the reservoired oils. The oils at West Dikirnis are interpreted to have been derived from an Upper Cretaceous – Lower Tertiary terrigenous, clay‐rich source rock, and to have migrated up along steeply‐dipping faults to the Qawasim sandstones reservoir. This interpretation is supported by the high C29/C27 sterane, diasterane/sterane, hopane/sterane and oleanane/C30 hopane ratios in the oils. Biomarker‐based maturity indicators (Ts/Tm, moretanes/hopanes and C32 homohopanes S/S+R) suggest that oil expulsion occurred before the source rock reached peak maturity. Previous studies have shown that the Upper Cretaceous – Lower Tertiary source rock is widely distributed throughout the on‐ and offshore Nile Delta. A wet gas sample from the Messinian sandstones at El‐Tamad field, located near to West Dikirnis, was analysed to determine its molecular and isotopic composition. The presence of isotopically heavy δ13 methane, ethane and propane indicates a thermogenic origin for the gas which was cracked directly from a humic kerogen. A preliminary burial and thermal history model suggests that wet gas window maturities in the study area occur within the Jurassic succession, and the gas at El‐Tamad may therefore be derived from a source rock of Jurassic age.  相似文献   

4.
This study evaluates the petroleum potential of source rocks in the pre‐rift Upper Cretaceous – Eocene succession at the Belayim oilfields in the central Gulf of Suez Basin. Organic geochemical and palynofacies investigations were carried out on 65 cuttings samples collected from the Thebes, Brown Limestone and Matulla Formations. Analytical methods included Rock‐Eval pyrolysis, Liquid Chromatography, Gas Chromatography and Gas Chromatography – Mass Spectrometry. Four crude oil samples from producing wells were characterised using C7 light hydrocarbons, stable carbon isotopes and biomarker characteristics. The results showed that the studied source rocks are composed of marine carbonates with organic matter dominated by algae and bacteria with minimal terrigenous input, deposited under reducing conditions. This conclusion was supported by n‐alkane distributions, pristane/ phytane ratios, homohopane and gammacerane indices, high concentrations of cholestane, the presence of C30 n‐propylcholestanes, and low diasterane ratios. The source rocks ranged from immature to marginally mature based on the Rock‐Eval Tmax together with biomarker maturity parameters. The analysed crude oil samples are interpreted to have been derived from source rock intervals within the Eocene Thebes Formation and the Upper Cretaceous Brown Limestone. The similarity in the geochemical characteristics of the crude oils suggests that there was little variation in the organofacies of the source rocks from which they were derived.  相似文献   

5.
This study presents an organic geochemical characterization of heavy and liquid oils from Cretaceous and Cenozoic reservoir rocks in the Tiple and Caracara blocks in the eastern Llanos Basin, Colombia. Samples of heavy oil were recovered from the Upper Eocene Mirador Formation and the C7 interval of the Oligocene – Miocene Carbonera Formation; the liquid oils came from these intervals and from the Cretaceous Guadalupe, Une and Gachetá Formations. The heavy oil and most of the liquid oils probably originated from multiple source rocks or source facies, and showed evidence of biodegradation as suggested by the coexistence of n‐alkanes and 25‐norhopanes. The results indicate a close genetic relationship between the samples in the Carbonera (C7 interval), Mirador and Guadalupe Formation reservoirs. These petroleums are interpreted to result from at least two separate oil charges. An early charge (Oligocene to Early Miocene) was derived from marine carbonate and transitional siliciclastic Cretaceous source rocks as indicated by biomarker analysis using GC/MS. This initial oil charge was biodegraded in the reservoir, and was mixed with a later charge (or charges) of fresh oil during the Late Miocene to Pliocene. A relatively high proportion of the unaltered oil charge was recorded for heavy oil samples from the Melero‐1 well in the Tiple block, and is inferred to originate from Cenozoic carbonaceous shale or coaly source rocks. Geochemical parameters suggest that oils from the Gachetá and Une Formations are similar and that they originated from a source different to that of the other oil samples. These two oils do not correlate well with extracts from transitional siliciclastic source rock from the Upper Cretaceous Gachetá Formation in the Ramiriqui‐1 well, located in the LLA 22 block to the north. By contrast, one or more organofacies of the Gachetá Formation may have generated the heavy oil and most of the liquid oil samples. The results suggest that the heavy oils may have formed as a result of biodegradation at the palaeo oil‐water contact, although deasphalting cannot entirely be dismissed.  相似文献   

6.
The depositional environment and maturity of source rocks in the southern Gulf of Suez were evaluated using biomarker and isotope data from crude oils derived from a variety of source rock types of different geological ages. Two oils families were identified and are referred to as types A and B. Type A oils are characterized by a predominance of oleanane and relatively low gammacerane concentrations, suggesting that they were derived from a terrigenous source rock with a significant input of angiosperm material inferred to occur within the marginally-mature syn-rift Lower Miocene Rudeis Shale. By contrast, type B oils are distinguished by a predominance of gammacerane and relatively low oleanane concentrations, suggesting that they were generated from mature marine carbonate source rocks inferred to occur within the Upper Cretaceous Brown Limestone and Middle Eocene Thebes Formation. Maturity parameters including the sterane isomerisation ratios C 29αββ/(αββ+ααα), C29ααα20S/(S+R) and TAS/(TAS+MAS), together with aromatic sulphur compound ratios (4-MDBT / I-MDBT; 4,6- / 1,4-DMDBT; 2,4–/ 1,4-DMDBT; and DBT / phenanthrenes), support the higher thermal maturity of type B oils relative to type A oils.
The biomarker variablility reflects the occurrence of two distinct source rocks in the southern Gulf of Suez and suggests that two independent petroleum systems are present here. These appear to be confined to the pre-rift (pre-Miocene) and syn-rift megasequences respectively.  相似文献   

7.
This study presents a systematic geochemical analysis of Paleogene crude oils and source rocks from the Raoyang Sag in the Jizhong sub-basin of the Bohai Bay Basin (NE China). The geochemical characteristics of fifty-three oil samples from wells in four sub-sags were analysed using gas chromatography (GC) and gas chromatography – mass spectrometry (GC-MS). Twenty core samples of mudstones from Members 1 and 3 of the Eocene-Oligocene Shahejie Formation were investigated for total organic carbon (TOC) content and by Rock-Eval pyrolysis and GC-MS to study their geochemistry and hydrocarbon generation potential. The oils were tentatively correlated to the source rocks. The results show that three groups of crude oils can be identified. Group I oils are characterized by high values of the gammacerane index and low values of the ratios of Pr/Ph, Ts/Tm, 20S/(20S+20R) C29 steranes, ββ/(ββ+αα) C29 steranes, C27 diasteranes/ C27 regular steranes and C27/C29 steranes. These oils have the lowest maturity and are interpreted to have originated from a source rock containing mixed organic matter deposited in an anoxic saline lacustrine environment. The biomarker parameter values of Group III oils are the opposite to those in Group I, and are interpreted to indicate a highly mature, terrigenous organic matter input into source rocks which were deposited in suboxic to anoxic freshwater lacustrine conditions. The parameter values of Group II oils are between those of the oils in Groups I and III, and are interpreted to indicate that the oils were generated from mixed organic matter in source rocks deposited in an anoxic brackish–saline or saline lacustrine environment. The results of the source rock analyses show that samples from Member 1 of the Shahejie Formation were deposited in an anoxic, brackish – saline or saline lacustrine environment with mixed organic matter input and are of low maturity. Source rocks in Member 3 of the Shahejie Formation were deposited in a suboxic to anoxic, brackish – saline or freshwater lacustrine environment with a terrigenous organic matter input and are of higher maturity. Correlation between rock samples and crude oils indicates that Group I oils were probably derived from Member 1 source rocks, while Group III oils were more likely generated by Member 3 source rocks. The Group II oils with transitional characteristics are likely to have a mixed source from both sets of source rocks.  相似文献   

8.
Five crude oil samples from the Quiriquire field (Maturin sub-basin, Eastern Venezuelan Basin) were analysed to evaluate their levels of biodegradation. The oils were obtained from coarse sandstones and conglomerates of the Pliocene Quiriquire Formation at depths <1000 m. Analyses of the samples’ bulk physicochemical parameters indicate variations in API gravity and in the content of saturated hydrocarbons and NSO+asphaltenes, and also in the saturate/aromatic ratio which increases in more biodegraded oils. n-Alkane distributions are characterized by a dominant unresolved complex mixture (UCM) or hump under an envelope of peaks which lack the acyclic isoprenoids pristane and phytane. The alteration of steranes and terpanes together with the presence of 25-norhopanes and 17-nor-tricyclic terpanes, and the alteration of low molecular-weight (C20-C21) triaromatic steroids, phenanthrene, methyl-phenanthrene, dibenzothiophene and methyl-dibenzothiophene, indicate that the oils have undergone severe biodegradation. The oils contain compounds with different susceptibilities to biodegradation which is probably a consequence of the mixing of different oil charges in the Quiriquire Formation reservoir. The oils were derived from underlying source rocks in the Upper Cretaceous Guayuta Group (Querecual and San Antonio Formations), and migration into the shallow reservoir at Quiriquire field likely occurred continuously through time. Although the oils have undergone severe biodegradation, it was possible to make some inferences about their origin. Thus, the analyzed oils are interpreted to have originated from marine shale or marl source rocks containing mixed organic matter deposited under anoxic-suboxic conditions and were generated at near peak oil window maturities.  相似文献   

9.
The Bongor Basin in southern Chad is an inverted rift basin located on Precambrian crystalline basement which is linked regionally to the Mesozoic – Cenozoic Western and Central African Rift System. Pay zones present in nearby rift basins (e.g. Upper Cretaceous and Paleogene reservoirs overlying Lower Cretaceous source rocks) are absent from the Bongor Basin, having been removed during latest Cretaceous – Paleogene inversion-related uplift and erosion. This study characterizes the petroleum system of the Bongor Basin through systematic analyses of source rocks, reservoirs and cap rocks. Geochemical analyses of core plug samples of dark mudstones indicate that source rock intervals are present in Lower Cretaceous lacustrine shales of the Mimosa and upper Prosopis Formations. In addition, these mudstones are confirmed as a regional seal. Reservoir units include both Lower Cretaceous sandstones and Precambrian basement rocks, and mature source rocks may also act as a potential reservoir for shale oil. Dominant structural styles are large-scale inversion anticlines in the Lower Cretaceous succession whilst underlying “buried hill” -type basement plays may also be important. Accumulations of heavy to light oils and gas have been discovered in Lower Cretaceous sandstones and basement reservoirs. The Great Baobab field, the largest discovery in the Bongor Basin with about 1.5 billion barrels of oil in-place, is located in the Northern Slope, a structural unit near the northern margin of the basin. Reservoirs are Lower Cretaceous syn-rift sandstones and weathered and fractured zones in the crystalline basement. The field currently produces about 32,000 barrels of oil per day.  相似文献   

10.
ABSTRACT

Crude oils from the Gulf of Suez and the North Western Desert of Egypt have been analyzed for geochemical biomarkers using GC and GC-MS techniques. The biomarker compositions of the crude oils have been used to differentiate crude oils of non-marine, normal marine and marine carbonate sources. The geochemical features of Zaafarana crude oil from the Gulf of Suez Basin indicate a marine carbonate depositional setting. One crude oil from Budran however, possesses geochemical characteristics consistent with an origin from source rock deposited in normal marine conditions. Bahar and Morgan show normal marine source rock deposition environment with terrigenous organic matter input. On the other hand, the crude oils from the North Western Desert have bulk and biomarker characteristics cosistent with non-marine depositional setting, with the exception of one oil sample which appears to have a mixed marine/terrestrial sources. The presence of oleanane in some of these oils suggests source rocks deposited in deltaic or near shore environment in Post Cretaceous Basin.  相似文献   

11.
Crude oils from the Gulf of Suez and the North Western Desert of Egypt have been analyzed for geochemical biomarkers using GC and GC-MS techniques. The biomarker compositions of the crude oils have been used to differentiate crude oils of non-marine, normal marine and marine carbonate sources. The geochemical features of Zaafarana crude oil from the Gulf of Suez Basin indicate a marine carbonate depositional setting. One crude oil from Budran however, possesses geochemical characteristics consistent with an origin from source rock deposited in normal marine conditions. Bahar and Morgan show normal marine source rock deposition environment with terrigenous organic matter input. On the other hand, the crude oils from the North Western Desert have bulk and biomarker characteristics cosistent with non-marine depositional setting, with the exception of one oil sample which appears to have a mixed marine/terrestrial sources. The presence of oleanane in some of these oils suggests source rocks deposited in deltaic or near shore environment in Post Cretaceous Basin.  相似文献   

12.
ORIGIN OF CRUDE OILS IN OMAN   总被引:1,自引:0,他引:1  
The petroleum geochemistry of Oman provides a picture of considerable variey, since crude oils and their source rocks are found both throughout the country and throughout the stratigraphic column from the Infra-Cambrian to the Tertiary. This paper reviews the geological history history of the area and places the petroleum geochemistry within the geological context. The oils can be geochemically classified into five groups. Three groups can be related to god oil source rocks found in the pre-Cambrian Huqf Group, the Silurian Safiq and the Cretaceous Natin Formation. Another group of oils probably originates from the Upper Jurassic Diyab Formations, while the fifth group of crudes (named ‘Q’) cannot be correlated to a known source rock, but is inferred to have originated from an unsampled Huqf level. The “Huqf oils” are those that have been correlated to known Infra-Cambrian Huaf source rocks, and are characterized by a strong C29 sterane predonominance and very light carbon isotope values of around-36.0%. In contrast, the ‘Q’ crudes, drived from the unknown source are characterized by a C27 strerane predominance and carbon istope ratios of around -30.5%. Both the Huaf and ‘Q’ crudes also contain a series of characteristic compounds referred to as the ‘X’ compounds (all isomers of methyle and dimethyl alkanes). Oils reasoned to originate from Silurian Safiq source rocks have a week C29 sterane precominance, a significant content of rearranged steranes and carbon isotope ratios of -30.5%. The oils thought to originate from the Jurassic Diyab Formation have a similar sterane distribution but heavier carbon isotope values of around -26.5%. Finally, the crude oils from the mid-Cretaceous Naith Formation source rocks are characteirzed by steranes with an equivalent distribution of C27, C28 and C29 isomers, and carbon isotope values of around -26.9%. These variations in biomarker distributions and carbon isotope values are sufficiently distinct to ensure a high degree of certainty in the grouping of the crude oils.  相似文献   

13.
Abstract

Crude oils together with extracts from the Middle Jurassic (Khatatba Formation), Barremian-Early Aptian Alam El Bueib Formation, and Early Albian Kharita Formation were collected from five wells (Ras Qattara-Zarif-5, Ras Qattara-Zarif-3, and Zarif-1, Zarif-2, SW Zarif-1) in the North Qattara Depression. Biomarkers (pristane/phytane, isoprenoids/n-alkanes, steranes, triterpanes, C29 steranes 20S/20S + 20R, C23 tricyclic/C30 hopane, Ts/Tm, C30 moretane/C30 hopane ratios, homohopane and gammacerane indices) of the saturated hydrocarbon fraction were analyzed in order to assess the source and maturity of the crude oils and the extracts. The results suggested that the oils from Khatatba and Alam El Bueib formations are mature, derived from source rocks containing marine and terrestrial organic matter, respectively. The source environments and maturity of the oil from the Khatatba Formation is similar to that of the Khatatba source rock extract. The oil from the Alam El Bueib formation differs from the extracts of the Alam El Bueib and Kharita formations. The Khatatba formation seems to be an effective source rock in the North Qattara Depression.  相似文献   

14.
Nine crude oils and eight source rock samples from Cretaceous sequences, Lower Indus Basin have been characterized by means of diagnostic biomarker parameters in order to establish genetic liaison among them. The biomarker geochemistry indicators such as relative distribution of C27-C28-C29 ααα-20R steranes, C19 and C23 tricyclic terpanes (TT), C24 tetracyclic terpanes (TeT), hopanes distribution, steranes/hopanes ratio, presence of unidentified compound X (C30 pentacyclic triterpane), and pristane (Pr) to phytane (Ph) ratio suggest that the crude oils contain predominantly terrigenous organic matter (OM). Based on these data, the analyzed crude oils from the Lower Indus Basin are genetically associated and could be classified into a single group. Geochemical correlation studies of crude oils and source rock sediments indicate that Lower Goru shales and Sembar could be the probable source rocks for the petroleum generated from Cretaceous strata, Lower Indus Basin, Pakistan.  相似文献   

15.
Biomarker‐ and compound‐specific carbon isotope analyses were used to compare oil samples recovered from Late Jurassic and Early to Middle Cretaceous reservoirs at South Pars and nearby fields in the Iranian portion of the Persian Gulf, and condensate samples associated with the super‐giant gas accumulation in Permo‐Triassic reservoirs at South Pars. The results indicate that all of the oil samples, including heavy oil from South Pars and oil from the Salman, Reshadat, Resalat and Balal fields, are genetically related. The most probable source rocks for these oils are Jurassic marine limestones or marls deposited under anoxic conditions. Based on the methyl phenanthrene index, source rock maturity was inferred to be equivalent to vitrinite reflectance values of about 0.8% Rc. The distribution and maturity pattern of the source rocks suggest migration from a depocentre located to the south, with inferred migration distances of up to 250 km. There is no genetic relationship between the heavy oil which has accumulated in Mesozoic reservoirs at South Pars and condensates which are associated with the super‐giant gas accumulation in Permo‐Triassic reservoirs there. Based on biomarker compositions, the condensates at South Pars appear to be derived from shaly marine or lacustrine source rocks deposited under dysoxic conditions. The δ13C values of short‐chain n‐alkanes and isoprenoids in condensate samples suggest a common source and an equal maturity for the source rocks. Pristane/n‐C17 versus phytane/n‐C18 characteristics are in agreement with published data for Silurian‐sourced condensates. High thermal maturities equivalent to 1.7% Rc are also consistent with a Palaeozoic (Silurian) source rock.  相似文献   

16.
Molecular and stable carbon isotope compositions of 46 Ordovician crude oil samples from wells in the Tuoputai region of the northern Tarim Basin were investigated using GC–MS, MRM GC–MS and IRMS to determine their genetic relationships and to identify possible source rocks. Thirty-three source rock samples from outcrops and cores were also investigated. The oil samples varied from light to heavy crudes and showed very narrow δ13C value ranges for the whole oil, saturated and aromatic fractions. The majority of the oils displayed very similar molecular compositions with relatively high concentrations of n-alkanes and isoprenoids and low concentrations of terpenoids and steroids. Comparison of the compositions of these crude oils strongly suggested their genetic affinity, while maturity parameters indicated maturity variations from the peak to the late oil generation stages. The samples also showed the characteristics of mixtures of biodegraded and fresh oil charges. Bitumen extracts from Cambrian and Ordovician source rocks were studied in detail. The oil compositions suggested a marine marl source deposited in anoxic, hypersaline conditions with significant bacterial and algal organic matter inputs. The distributions of C26–C28 triaromatic steroids, tricyclic terpanes and regular steranes appear to have been greatly influenced by thermal maturation, making them unreliable for correlating the oils and the source rocks. In contrast, dinosteranes and triaromatic dinosteroids seem not to have been affected by maturation and were more useful for correlation studies. They indicated that there was no or little genetic relationship between the Cambrian – Lower Ordovician source rocks and the oils, but in general suggested a possible Middle – Upper Ordovician source for the oil accumulations in the Tuoputai field. However, the occurrence of triaromatic dinosteroids in oil from well TP28XCX may also suggest a minor contribution from Cambrian – Lower Ordovician source rocks.  相似文献   

17.
Coastal parts of Croatia are dominated by the SW‐verging Dinaric foldbelt, to the west and SW of which is the Adriatic Basin (the stable foreland). In both areas, the stratigraphic column is dominated by a thick carbonate succession ranging from Carboniferous to Miocene. Four megasequences have been identified: (i) a pre‐platform succession ranging in age from Late Carboniferous (Middle Pennsylvanian: Moscovian) to Early Jurassic (Early Toarcian; Bru?ane and Ba?ke Ostarije Formations); (ii) an Early Jurassic to Late Cretaceous platform megasequence (Mali Alan Formation); (iii) a Paleogene to Neogene post‐platform megasequence (Ra?a Formation); and (iv) a Neogene to Quaternary (Pliocene to Holocene) megasequence (Istra and Ivana Formations). A number of organic‐rich intervals with source rock potential have been identified on‐ and offshore Croatia: Middle and Upper Carboniferous, Upper Permian, Lower and Middle Triassic, Lower and Upper Jurassic, Lower and Upper Cretaceous, Eocene, and Pliocene – Pleistocene. Traps and potential plays have been identified from seismic data in the Dinaric belt and adjacent foreland. Evaporites of Permian, Triassic and Neogene (Messinian) ages form potential regional seals, and carbonates with secondary porosity form potential reservoirs. Oil and gas shows in wells in the Croatian part of the Adriatic Basin have been recorded but no oil accumulations of commercial value have yet been discovered. In the northern Adriatic offshore Croatia, Pliocene hemi‐pelagic marlstones and shales include source rocks which produce commercial volumes of biogenic gas. The gas is reservoired in unconsolidated sands of the Pleistocene Ivana Formation.  相似文献   

18.
The timing of the orogenic events associated with the closure of South Tethys significantly influenced the generation, migration and entrapment of petroleum in the Zagros Foldbelt of Iran. This influence was particularly important in the Dezful Embayment, which is one of the world's richest oil provinces, containing some 8% of global oil reserves in an area of only 60,000 sq. km. In the Dezful Embayment, oil and associated gas occur in two carbonate reservoirs ‐ the Sarvak Formation of Cenomanian to Turonian age, and the Oligocene ‐ Early Miocene Asmari Formation, sealed by the evaporites of the Gachsaran Formation. The oil and associated gas are trapped in large “whaleback” anticlines which formed during the Neogene Zagros orogeny. Two excellent source rocks, the Albian Kazhdumi Formation and the upper part of the Pabdeh Formation (Middle Eocene to Early Oligocene), supplied the Asmari and Sarvak reservoirs and with them form the Middle Cretaceous to Early Miocene Petroleum System. This system was found to be independent of older petroleum systems. Two particular problems are addressed in this paper. The first is the relative timing of trap formation versus oil expulsion from the source rocks. If oil expulsion occurred prior to Zagros folding, the oil would have migrated along gently dipping ramps towards the Persian (Arabian) Gulf and Southern Iraq, and would have been trapped a long way from the source kitchen. By contrast, if oil expulsion took place when the whaleback anticlines already existed or had at least begun to develop, the oil generated would have moved almost vertically towards the nearest anticline. Secondly, we assess the type of heatflow to be used for modelling. This could be either variable or constant, depending on the stability or instability of the Arabian Platform and on subsidence variations during source rock maturation. Our conclusions can be summarized as follows. First, the paroxysmal phase of Zagros folding commenced in the Dezful Embayment towards the end of the Middle Miocene around 10 Ma ago and continued throughout the Late Miocene and Pliocene. Second, bearing in mind the remarkable stability of the Arabian Platform for some 260 Ma, during which there was almost continuous gentle subsidence between the Permian transgression and the Early Miocene, a constant heatflow was used for modelling. Burial profiles and maturity indices, such as vitrinite reflectance and Rock‐Eval parameters, demonstrate that the Kazhdumi and Pabdeh source rocks reached the onset of oil expulsion during deposition of the Agha Jari Formation between 8 and 3Ma, depending upon the location. This chronology means that oil migrated from source rocks into preexisting Zagros structures. Therefore, oil migrated over short distances to nearby traps within well‐defined drainage areas, the geometry of which can be deduced from seismic data. Moreover, the Zagros folding induced prominent fracturing which can be observed both at outcrop and in wells. This fracturing, which affects lime‐stones as well as marls, enhanced subvertical migration of hydrocarbons towards the reservoirs. As a result of this short distance migration, oils can directly be linked to the source rocks which generated them by oil‐oil and oil‐source rock correlations based on stable isotope (σ13C, σ34S) and biomarker data. Modelling of each drainage area provides estimates of the amount of oil expelled by each source rock. Calculated estimates can then be compared to the actual oil‐in‐place of the corresponding field. An example of this modeling procedure is given in this paper.  相似文献   

19.
塔里木盆地西南坳陷烃源岩评价   总被引:1,自引:0,他引:1  
根据烃源岩有机质丰度并结合地质分析方法,提出了油源丰度指数的概念并以此对塔里木盆地西南坳陷的烃源岩进行了评价.认为中新统、上白垩统—下第三系为较差—非烃源岩,中、下侏罗统暗色泥岩、石炭系—下二叠统和寒武—奥陶系暗色碳酸盐岩为较好—好的烃源岩,古生界的泥质岩基本为非烃源岩.  相似文献   

20.
本文通过对塔西南喀什拗陷石油地质条件的再认识,确认了中侏罗统扬叶组是本区中、新生界的主力生油岩,下白垩统克孜勒苏群中的风成砂岩为优良的储集层,覆盖其上的上白垩统和下第三系为多层系封盖性好的区域盖层,尤其是古新统阿尔塔什组石膏层更为理想的遮盖层。它们在纵横向上构成了有机的油气生储盖匹配。据此在喀什拗陷选择合适构造进行勘探,可望有新的突破。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号