首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we report a novel procedure for fabricating internally tapered capillary columns suitable for the coupling of capillary electrochromatography (CEC) to electrospray mass spectrometry (ESI-MS). The internal tapers were prepared by slowly heating the capillary end in a methane/O2 flame. Due to continuous self-shrinking of the inner channel of the capillary, the inside diameter of the opening was reduced to 7-10 microm. The procedure is easy to handle, with no requirement for expensive equipment as well as elimination of problematic grinding of the tip. Several advantages of these new internal tapers, as compared to using externally tapered columns, are described. First, the problems of poor durability and tip breakage associated with external tapering were successfully overcome with the internal taper. A comparison of the online CEC/ESI-MS between external versus internal tapers showed that the latter provides enhanced electrospray stability, resulting in significantly lower short-term noise and very short-term noise values. In turn, the more rugged design of internal tapers allows performing CEC/MS utilizing a harsh polar organic mobile phase, which was not previously successful using an external taper due to higher operating current and electrospray arcing. Next, data on the reproducibility of the internally tapered CEC/MS column using warfarin and beta-blockers as model analytes are presented. For example, when comparing the reproducibility for separation of warfarin under reversed-phase conditions, the internal taper demonstrated superior intraday % RSD (1.6-3.4) as compared to the external taper intraday % RSD (5-6). Last, the applicability of performing quantitative CEC/MS with internally tapered capillaries is demonstrated for simultaneous enantioseparation of beta-blockers. Impressive quantitative results include good linearity of calibration curves (e.g., R2 = 0.9940-0.9988) and limit of detection as low as 30 nM. The sensitive detection of a minor impurity of one enantiomer at the 0.1% level in a major chiral entity buttresses the suitability of compliance with FDA guidelines.  相似文献   

2.
Que AH  Novotny MV 《Analytical chemistry》2002,74(20):5184-5191
While developing a combination of capillary electrochromatography (CEC) with tandem mass spectrometry (MS) for the benefit of characterizing complex oligosaccharide mixtures, we needed highly efficient CEC columns operating in an "MS-friendly" mode. We demonstrate here novel types of polar, monolithic CEC columns that separate effectively complex mixtures of saccharides with the use of mobile phases containing acetonitrile/dilute ammonium formate buffers. Using the positive-ion mode of detection for neutral saccharides, the detection conditions were optimized down to the low-femtomole sensitivities with the use of an ion trap mass spectrometer. This column technology provides a nearly universal system that can separate a wide range of carbohydrates: mono- and oligosaccharides with the intact reducing end, as well as saccharide alditols. Even the anomers formed due to mutarotation could be resolved with a high content of organic phase.  相似文献   

3.
A novel fritless capillary column for capillary electrochromatography (CEC) has been developed. The ODS microspheres were packed into a capillary and were then immobilized within an organic polymer prepared in situ through a photopolymerization process. The entrapment conditions were investigated to minimize the effect of the polymer matrix on the chromatographic properties of the packing material. The organic polymer matrix in the microsphere-packed column functions to link microspheres at specific sphere-sphere and sphere-capillary contact points. CEC separations of a PAH test mixture using entrapped columns with different UV illumination times were compared in terms of retention factor and separation efficiency. The optimized entrapped column demonstrated better chromatographic performance than similarly packed columns with conventional inlet and outlet frits. The electrochromatographic separations of hormones and peptides were also demonstrated on entrapped ODS columns.  相似文献   

4.
A sample deposition device has been constructed and optimized for interfacing CEC and capillary LC columns to MALDI mass spectrometry. For CEC analysis, the device is composed of an inlet buffer reservoir and an outlet buffer reservoir connected to a matrix reservoir through a connection sleeve. The matrix reservoir is connected to a deposition capillary via another connection sleeve. CEC eluent is transported to the matrix reservoir via a capillary that is connected to the deposition capillary by the connection sleeve inside the matrix reservoir. This connection sleeve also acts as a mixing chamber, allowing the CEC eluent to be mixed with matrix prior to deposition. Complex glycan mixtures can be separated by CEC using hydrophilic-phase monolithic columns, with capillary eluent being deposited on a standard MALDI plate along with a suitable matrix solution. Thousands of discrete, highly homogeneous dots can be generated for a subsequent mass spectrometric analysis. With minor modifications, this device is also applicable to capillary LC of peptides using gradient elution. In this configuration, the outlet of the LC column is connected to a deposition capillary inside a matrix reservoir through a connection sleeve that allows mixing of the LC effluent with an appropriate matrix. The device has been evaluated with the tryptic digests of proteins.  相似文献   

5.
The ability to manipulate and effectively utilize small proteomic samples is important for analyses using liquid chromatography (LC) in combination with mass spectrometry (MS) and becomes more challenging for very low flow rates due to extra column volume effects on separation quality. Here we report on the use of commercial switching valves (150-microm channels) for implementing the on-line coupling of capillary LC columns operated at 10,000 psi with relatively large solid-phase extraction (SPE) columns. With the use of optimized column connections, switching modes, and SPE column dimensions, high-efficiency on-line SPE-capillary and nanoscale LC separations were obtained demonstrating peak capacities of approximately 1000 for capillaries having inner diameters between 15 and 150 microm. The on-line coupled SPE columns increased the sample processing capacity by approximately 400-fold for sample solution volume and approximately 10-fold for sample mass. The proteomic applications of this on-line SPE-capillary LC system were evaluated for analysis of both soluble and membrane protein tryptic digests. Using an ion trap tandem MS it was typically feasible to identify 1100-1500 unique peptides in a 5-h analysis. Peptides extracted from the SPE column and then eluted from the LC column covered a hydrophilicity/hydrophobicity range that included an estimated approximately 98% of all tryptic peptides. The SPE-capillary LC implementation also facilitates automation and enables use of both disposable SPE columns and electrospray emitters, providing a robust basis for automated proteomic analyses.  相似文献   

6.
A novel column is described that does not require frits to keep packing material within a capillary. A continuous bed is prepared in situ in aqueous solution by radical copolymerization of N-isopropylacrylamide and 2-acrylamido-2-methylpropanesulfonic acid (the resultant gel is denoted poly(AMPS-co-IPAAm). N,N'-Methylenebisacrylamide is used for cross-linking. On the application of an electrical field, electroosmotic flow (EOF) is developed in the bed along the capillary, where fluid propulsion would be otherwise difficult to achieve. The resultant EOF transports neutral compounds through the column without forcing the gel out of the capillary. Examination of the fluid motion in the continuous bed using a video microscope system and an image processor shows a relatively flat flow profile of EOF. The bed functions as the stationary phase for reversed-phase capillary electrochromatography (CEC). This new approach is an alternative to packed capillary columns which have been used previously in CEC. A high efficiency is obtained for a steroid which is separated on a 4.0% total monomer concentration (T), 10.0% degree of cross-linking (C), and 10.0% mole fraction of AMPS in the total monomer (S), poly(AMPS-co-IPAAm) column. A mixture of polyaromatic hydrocarbons is separated on a 6.9% T, 5.8% C, and 5.5% S poly(AMPS-co-IPAAm) column. The capacity factor of benzo[a]pyrene increases from 0.63 to 1.91 as the acetonitrile content in a Tris-boric acid buffer is decreased from 45 to 30% (v/v). The run-to-run RSD of analyte migration time is less than 0.73%, and the day-to-day RSD is acceptable. Potential benefits of this approach are also mentioned.  相似文献   

7.
Zheng J  Shamsi SA 《Analytical chemistry》2006,78(19):6921-6927
Benzo[a]pyrene, one of the most carcinogenic PAHs, has 12 monomethylated positional isomers (MBAPs). A strong correlation between the carcinogenicity of these isomers and methyl substitution has been reported. In this study, on-line coupling of capillary electrochromatography (CEC) and atmospheric pressure photoionization mass spectrometry (APPI-MS) provides a unique solution to highly selective separation and sensitive detection of MBAP isomers. The studies indicated that APPI provides significantly better sensitivity compared to electrospray ionization and atmospheric pressure chemical ionization modes of MS. A systematic investigation of APPI-MS detection parameters and CEC separation is established. First, several sheath liquid parameters (including type and concentration of volatile buffers, type and content of organic modifiers, use of dopants and inorganic/organic additives, and sheath liquid flow rate) and APPI-MS spray chamber parameters (capillary voltage, vaporizer temperature, nebulizer pressure) were found to have effects on detection sensitivity as well as the profile of mass spectrum. For example, when ammonium acetate was replaced with acetic acid in the sheath liquid, the MS signal was enhanced as much as 90% and the formation of ammonia adduct was effectively suppressed. Next, the separation of MBAP isomers was conducted on internal tapered columns packed with polymeric C18 stationary phase. With the use of a mobile phase consisting of slightly higher acetonitrile content (90%,v/v) and a small amount of tropylium ion, the analysis times were significantly shortened by 20 min without compromising the resolutions between the isomers. Finally, quantitative aspects of the CEC-APPI-MS method were demonstrated using 7-MBAP as the internal standard. The calibration curves of three of the most carcinogenic isomers, namely, 1-MBAP, 3-MBAP, and 11-MBAP, showed good linearity in the range of 2.5-50 microg/mL with a limit of detection at 400 ng/mL.  相似文献   

8.
We describe the coupling of capillary-scale monolithic enzyme reactor columns directly to a tandem mass spectrometer for screening of enzyme inhibitors. A two-channel nanoLC system is used to continuously infuse substrate or substrate/inhibitor mixtures through the column, allowing continuous variation of inhibitor concentration by simply altering the ratio of flow from the two pumps. In the absence of inhibitor, infusion of substrate leads to formation of product, and both substrate and product ions can be simultaneously monitored in a quantitative manner by MS/MS. The presence of inhibitor leads to a decrease in product and an increase in substrate concentration in the column eluent. Knowing the product/substrate ratio and the total analyte concentration (P + S), the concentration of product eluting, and hence the relative enzyme activity, can be determined. Both IC50 and KI values can then be obtained by direct MS detection of the effect of inhibitors on relative activity. Inhibitor screening is demonstrated using reusable, sol-gel derived, monolithic capillary columns containing adenosine deaminase, directly interfaced to ESI-MS/MS. On-column enzyme activity was assessed by monitoring inosine and adenosine elution. It is shown that the method can be used for automated screening of the effects of compound mixtures on ADA activity and to determine the KI value of the known inhibitor, erythro-9-(2-hydroxy-3-nonyl)adenine, even when the compound is present within a mixture.  相似文献   

9.
Sol-gel chemistry was successfully used for the fabrication of open tubular columns with surface-bonded octadecylsilane (ODS) stationary-phase coating for capillary electrochromatography (OT-CEC). Following column preparations, a series of experiments were performed to investigate the performance of the sol-gel coated ODS columns in OT-CEC. The incorporation of N-octadecyldimethyl[3-(trimethoxysilyl)propyl]ammonium chloride as one of the sol-gel precursors played an important role in the electrochromatographic performance of the prepared columns. This chemical reagent possesses a chromatographically favorable, bonded ODS moiety, in conjunction with three methoxy groups allowing for sol-gel reactivity. In addition, a positively charged nitrogen atom is present in the molecular structure of this reagent and provides a positively charged capillary surface responsible for the reversed electroosmotic flow (EOF) in the columns during CEC operation. Comparative studies involving the EOF within such sol-gel ODS coated and uncoated capillaries were performed using acetonitrile and methanol as the organic modifiers in the mobile phase. The use of a deactivating reagent, phenyldimethylsilane, in the sol-gel solution was evaluated. Efficiency values of over 400,000 theoretical plates per meter were achieved in CEC on a 64 cm x 25 microm i.d. sol-gel ODS open tubular column. Test mixtures of polycyclic aromatic hydrocarbons, benzene derivatives, and aromatic aldehydes and ketones were used to evaluate the CEC performances of both nondeactivated and deactivated open tubular sol-gel columns. The effects of mobile-phase organic modifier contents and pH on EOF in such columns were evaluated. The prepared sol-gel ODS columns are characterized by switchable electroosmotic flow. A pH value of approximately 8.5 was found correspond to the isoelectric point for the prepared sol-gel ODS coatings.  相似文献   

10.
Monolithic capillary columns were prepared by copolymerization of styrene and divinylbenzene inside a 200-microm i.d. fused silica capillary using a mixture of tetrahydrofuran and decanol as porogen. With gradients of acetonitrile in 100 mM triethylammonium acetate, the synthesized columns allowed the rapid and highly efficient separation of single-stranded oligodeoxynucleotides and double-stranded DNA fragments by ion-pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC). Compared with capillary columns packed with micropellicular, octadecylated poly-(styrene/divinylbenzene) particles, an improvement in column performance of approximately 40% was obtained, enabling the analysis of an 18-mer oligodeoxynucleotide with a column efficiency of more than 190000 plates per meter. The chromatographic separation system was on-line-coupled to electrospray ionization mass spectrometry (ESI-MS). To improve the mass spectrometric detectabilities, 25 mM triethylammonium bicarbonate was utilized as an ion-pair reagent at the cost of only little reduction in separation performance and acetonitrile was added postcolumn as the sheath liquid through the triaxial electrospray probe. High-quality mass spectra of femtomole amounts of 3-mer to 80-mer oligodeoxynucleotides were recorded showing very little cation adduction. Double-stranded DNA fragments ranging in size from 51 to 587 base pairs were separated and detected by IP-RP-HPLC-ESI-MS. Accurate mass determination by deconvolution of the mass spectra was feasible for DNA fragments up to the 267-mer with a molecular mass of 165 019, whereas the spectra of longer fragments were too complex for deconvolution because of incomplete separation due to overloading of the column. Finally, on-line IP-RP-HPLC tandem MS was applied to the sequencing of short oligodeoxynucleotides.  相似文献   

11.
Columns employed so far in capillary electrochromatography (CEC) contain both a packed and an open segment with concomitant changes of the electric field strength and the flow velocity at the interface of the two segments in such duplex columns. To take this into account in measuring, processing, and interpreting CEC data, a framework is presented for the evaluation of the conductivity ratio and the interstitial electrosmotic flow (EOF) mobility and their usage as tools for characterizing CEC columns. This is illustrated by experimental data obtained from measurement of the current and the EOF in capillary columns packed with different stationary phases. The current data yielded the ratio of the conductivities of the packed and open segments that has been shown to be useful for the evaluation of the porosity and tortuosity. It is assumed that these important packing characteristics are the same for the flow of current and for the flow of the bulk mobile phase in the CEC column. The EOF mobility in such duplex columns is defined in two different ways. The apparent mobility, which is widely reported at present, is obtained from the length of packed segment, the migration time, and the overall electric field strength. On the other hand, the actual mobility is obtained after taking into account the porosity and tortuosity of the packing as well. Thus, the actual mobility is made independent of the porosity and tortuosity and therefore can be useful to estimate the zeta potential for characterizing the packing surface. Measurements of both the apparent and actual electrosmotic mobilities for a number of different columns have shown that the apparent and actual mobilities are significantly different in their magnitude. For this reason, it is recommended that, instead of the apparent EOF mobility, the actual mobility is used for the characterization of the packing in CEC columns.  相似文献   

12.
Zheng J  Shamsi SA 《Analytical chemistry》2003,75(22):6295-6305
The hyphenation of chiral capillary electrochromatography (CEC) with electrospray ionization mass spectrometry (ESI-MS) is very challenging but promising due to the fact that it combines sensitivity with high specificity and selectivity. In this work, CEC capillaries packed with (3R,4S)-Whelk-O1 chiral stationary phase were used for simultaneous enantioseparation of (+/-)-warfarin and its internal standard, (+/-)-coumachlor. Furthermore, both the chiral CEC separation and MS detection parameters were examined in detail. First, the influence of different column fabrication was investigated. Second, enantioseparation was optimized by varying CEC parameters, including acetonitrile concentration, buffer pH, and ionic strength. Under the optimum chiral CEC conditions, ESI-MS parameters such as sheath liquid pH and composition, sheath liquid flow rate, drying gas flow rate, drying gas temperature, nebulizer pressure, and fragmentor voltage were investigated to achieve maximum MS signals of the separated enantiomers. Finally, using solid-phase extraction as sample preparation method, (+/-)-warfarin spiked in 100-microL human plasma samples were analyzed. The calibration curves showed good linearity for both (R)-warfarin (R = 0.9979) and (S)-warfarin (R = 0.9978) enantiomers. The experimental limit of detection was approximately 25 ng/mL for both enantiomers. Even though the data are still preliminary, we can state with confidence that chiral CEC-ESI-MS has the potential to establish itself as a very powerful technique for the determination of enantiomeric ratios in human body fluid.  相似文献   

13.
A new design of immobilized particle separation media for capillary liquid chromatography and electrochromatography has been developed. A mixture of porogenic solvents and methacrylate-based monomers is pumped through a packed column to provide, following a polymerization step, an organic matrix capable of holding the sorbent particles in place, thus rendering the end frits unnecessary. The new columns demonstrate excellent chromatographic performance in both CEC (reduced plate height [h]=1.1-1.5) and micro LC modes (h = 2.2-2.5), while minimizing secondary interactions encountered when silica-based entrapment matrixes are employed. In addition to delivering mechanically robust columns, the methacrylate matrix provides a mechanism for fine tuning of the electroosmotic flow velocity when 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) is incorporated into the polymerization mixture.  相似文献   

14.
High‐performance liquid chromatography integrated with tandem mass spectrometry (HPLC–MS/MS) has become a powerful technique for proteomics research. Its performance heavily depends on the separation efficiency of HPLC, which in turn depends on the chromatographic material. As the “heart” of the HPLC system, the chromatographic material is required to achieve excellent column efficiency and fast analysis. Monolithic materials, fabricated as continuous supports with interconnected skeletal structure and flow‐through pores, are regarded as an alternative to particle‐packed columns. Such materials are featured with easy preparation, fast mass transfer, high porosity, low back pressure, and miniaturization, and are next‐generation separation materials for high‐throughput proteins and peptides analysis. Herein, the recent progress regarding the fabrication of various monolithic materials is reviewed. Special emphasis is placed on studies of the fabrication of monolithic capillary columns and their applications in separation of biomolecules by capillary liquid chromatography (cLC). The applications of monolithic materials in the digestion, enrichment, and separation of phosphopeptides and glycopeptides from biological samples are also considered. Finally, advances in comprehensive 2D HPLC separations using monolithic columns are also shown.  相似文献   

15.
This work describes the on-line hyphenation of a packed capillary electrochromatography (CEC) column with an internally tapered tip coupled to electrospray ionization-mass spectrometry (ESI-MS) and atmospheric pressure chemical ionization-mass spectrometry (APCI-MS) for the analysis of betaine-type amphoteric or zwitterionic surfactants (Zwittergent). A systematic investigation of the CEC separation and MS detection parameters comparing ESI and APCI is shown. First, a detailed and optimized manufacturing procedure for fabrication of the CEC-MS column with a reproducible internally tapered tip (7-9 microm) is presented. Next, the optimization of the separation parameters by varying the C(18) stationary-phase particle size (3 versus 1.5 microm), as well as mobile-phase composition including acetonitrile (ACN) volume fraction, ionic strength, and pH is described. The optimized separation is achieved using 3-microm C(18) packing with 75% ACN (v/v), 5 mM Tris at pH 8.0. Optimization for on-line CEC-ESI-MS detection is then done varying both the sheath liquid and spray chamber parameters while evaluating the use of random versus structured factorial table experimental designs. The more structured approach allows fundamental analysis of individual ESI-MS parameters while minimizing CEC and MS equilibration time between settings. A comparison of CEC-ESI-MS to CEC-APCI-MS using similar sheath and spray chamber conditions presents new insight for coupling of CEC to APCI-MS. The sheath liquid flow rate required to maintain adequate sensitivity is much higher in APCI source (50 microL/min) as compared to the ESI source (3 microL/min). The on-line mass spectra obtained in the full scan mode show that fragmentation in the two sources occurs at different positions on the Zwittergent molecules. For ESI-MS, the protonated molecular ion is always highest in abundance with minor fragmentation occurring due to the loss of the alkyl chain. In contrast, the APCI-MS spectra show that the highest abundant ion resulted by elimination of propane sulfonate from the Zwittergent molecule. A comparison of the sensitivity between the two sources in positive ionization SIM mode shows that CEC-ESI-MS provides an impressive limit of detection (LOD) of 5 ng/mL, which is at least 3 orders of magnitude lower than CEC-APCI-MS (LOD 100 microg/mL). Finally, the optimized CEC-MS methods comparing ESI and APCI are applied for separation and structural characterization of a real industrial zwittergent sample, Rewoteric AM CAS.  相似文献   

16.
A continuous macroporous silica gel network was prepared in a fused-silica capillary and evaluated in reversed-phase liquid chromatography. Under pressure-driven conditions, the monolithic silica column derivatized to C18 phase (100 microns in diameter, 25 cm in length, silica skeleton size of approximately 2.2 microns) produced plate heights of about 23 and 81 microns at 0.5 mm/s with a pressure drop of 0.4 kg/cm2, and at 4.0 mm/s with 3.6 kg/cm2, respectively, in 90% acetonitrile for hexylbenzene with a k value of 0.7. The separation impedance, E, calculated for the present monolithic silica column was much smaller at a low flow rate than those for particle-packed columns, although higher E values were obtained at a higher flow rate. Considerable dependence of column efficiency on the linear velocity of the mobile phase was observed despite the small size of the silica skeletons. A major source of band broadening in the HPLC mode was found in the A term of the van Deemter equation. The performance of the continuous silica capillary column in the electrodriven mode was much better than that in the pressure-driven mode. Plate heights of 7-8 microns were obtained for alkylbenzenes at 0.7-1.3 mm/s, although the electroosmotic flow was slow. In HPLC and CEC mode, the dependency of plate height on k values of the solutes was observed as seen in open tube chromatography presumably due to the contribution of the large through-pores. Since monolithic silica capillary columns can provide high permeability, the pressure-driven operation at a very low pressure can afford a separation speed similar to CEC at a high electric field.  相似文献   

17.
Monolithic columns for chiral capillary electrochromatography have been prepared within the confines of untreated fused-silica capillaries in a single step by a simple copolymerization of mixtures of O-[2-(methacryloyloxy)ethylcarbamoyl]-10,11-dihydroquinidine , ethylene dimethacrylate, and glycidyl methacrylate or 2-hydroxyethyl methacrylate in the presence of mixture of cyclohexanol and 1-dodecanol as a porogenic solvent. The porous properties of the monolithic columns can easily be controlled through changes in the composition of the binary porogenic solvent. Although both thermal- and UV light-initiated polymerizations afford useful capillary columns, monoliths prepared using the former approach exhibit better chromatographic properties. The ability to control pore size independently of the polymerization mixture composition enables the preparation of monoliths with varying percentages of the chiral monomer and cross-linker, as well as the optimization of their separation properties. Very good separations of model racemate (R,S)-N-3,5-dinitrobenzoylleucine were achieved using an optimized monolithic CEC column, with high efficiencies of up to 74000 plates/m for the retained peaks.  相似文献   

18.
We describe the preparation and performance of high-efficiency 70 cm x 20 microm i.d. silica-based monolithic capillary LC columns. The monolithic columns at a mobile-phase pressure of 5000 psi provide flow rates of approximately 40 nL/min at a linear velocity of approximately 0.24 cm/s. The columns provide a separation peak capacity of approximately 420 in conjunction with both on-line coupling with microsolid-phase extraction and nanoelectrospray ionization-mass spectrometry. Performance was evaluated using a Shewanella oneidensis tryptic digest, and approximately 15-amol detection limits for peptides were obtained using a conventional ion trap and MS/MS for peptide identification. The sensitivity and separation efficiency enabled the identification of 2367 different peptides covering 855 distinct S. oneidensis proteins from a 2.5-microg tryptic digest sample in a single 10-h analysis. The number of identified peptides and proteins approximately doubled when the effective separation time was extended from 200 to 600 min. The number of identified peptides increased from 32 to 390 as the injection amount was increased from 0.5 to 100 ng. Both the run-to-run and column-to-column reproducibility for proteomic analyses were also evaluated.  相似文献   

19.
We report on the design and application of a high-efficiency multiple-capillary liquid chromatography (LC) system for high-throughput proteome analysis. The multiple-capillary LC system using commercial LC pumps was operated at a pressure of 10,000 psi to deliver mobile phases through a novel passive feedback valve arrangement that permitted mobile-phase flow path switching and efficient sample introduction. The multiple-capillary LC system uses several serially connected dual-capillary column devices. The dual-capillary column approach eliminates the time delays for column regeneration (or equilibration) since one capillary column was used for a separation while the other was being washed. Several serially connected dual-capillary columns and electrospray ionization (ESI) sources were operated independently and can be used either for "backup" operation or for parallel operation with other mass spectrometers. This high-efficiency multiple-capillary LC system utilizes switching valves for all operations, enabling automated operation. The separation efficiency of the dual-capillary column arrangement, optimal capillary dimensions (column length and packed particle size), capillary regeneration conditions, and mobile-phase compositions and their compatibility with electrospray ionization were investigated. A high magnetic field (11.4 T) Fourier transform ion cyclotron resonance (FTICR) mass spectrometer was coupled on-line with this high-efficiency multiple-capillary LC system using an ESI interface. The capillary LC provided a peak capacity of approximately 650, and the 2-D capillary LC-FTICR analysis provided a combined resolving power of > 6 x 10(7) components. For yeast cytosolic tryptic digests > 100,000 polypeptides were detected, and approximately 1,000 proteins could be characterized from a single capillary LC-FTICR analysis using the high mass measurement accuracy (approximately 1 ppm) of FTICR, and likely more if LC retention time information were also exploited for peptide identification.  相似文献   

20.
Gu ZY  Jiang JQ  Yan XP 《Analytical chemistry》2011,83(13):5093-5100
The unusual properties of metal-organic frameworks (MOFs), such as permanent nanoscale porosity, high surface area, uniformly structured cavities, and the availability of in-pore functionality and outer-surface modification, are advantageous for diverse applications. However, most existing methods for the synthesis of nanosized MOFs require an activation procedure or auxiliary stabilizing agents. Here we report a 1-min, room-temperature approach for the synthesis of nanosized isoreticular MOFs (IRMOFs) to fabricate IRMOF coated capillary columns for the high-resolution gas chromatographic separation of persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), polybrominated diphenylethers (PBDEs), and hexachlorocyclohexanes (HCHs). The developed method allows the synthesis of well-shaped nanosized IRMOFs within 1 min at room temperature without the need for any activation procedure or auxiliary stabilizing agents. The IRMOF coated capillary columns offer good separation efficiency that is generally comparable to that of a commercial HP-5MS column for POPs. The IRMOF-1 and IRMOF-3 coated capillary columns gave the theoretical plate values of 2293 and 2063 plates m(-1) for naphthalene, respectively, which are slightly smaller than those with a HP-5MS column (2845 plates m(-1)). The IRMOF-1 coated capillary column offered good resolution for the separation of several intractable PAH isomer pairs, such as anthracene/phenanthrene, benzo[a]anthracene/chrysene, and benzo[b]fluoranthene/benzo[k]fluoranthene, with resolutions of 3.0, 1.1, and 4.1, respectively, which were difficult to be baseline separated on a HP-5MS column with a resolution of 1.0. In addition, the IRMOF-1 and IRMOF-3 coated capillary columns offered a clear group separation of the PCB isomers and a linear range covering three orders of magnitude. The relative standard deviations for the five replicate separations of PAHs were 0.23-0.26% and 2.1-4.5% for retention time and peak area, respectively. The fabricated IRMOF coated capillary columns have been shown to be very promising for the separation of POPs with good reproducibility, high resolution, great selectivity, and a wide linear range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号