首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lipopolysaccharide from Klebsiella oxytoca rough mutant R29 (O1-/K29-) has been isolated and its complete structure has been elucidated by compositional analyses, NMR spectroscopy, and laser-desorption mass spectrometry. The carbohydrate backbone has the structure [formula: see text] of which the GlcN residues (the lipid A backbone) are acylated by 14:(3-OH) (amide-linked) and 12:0, 14:0(3-OH)(ester-linked) fatty acids.  相似文献   

2.
Changes in the composition of membrane lipids in a strictly anaerobic, facultative acidophilic eubacterium, Sarcina ventriculi, were studied in response to various forms of environmental stress. Changes in lipid composition and structure occurred in response to changes in environmental pH. At neutral pH, the predominant membrane fatty acids ranged in chain length from C14 to C18. However, when cells were grown at pH 3.0, a family of unique very long chain fatty acids containing 32-36 carbon atoms was synthesized and accounted for 50% of the total membrane fatty acids. These acids were identified as very long chain alpha,omega-dicarboxylic acids ranging in length from 28 to 36 carbons by electron impact mass spectrometry of methyl and (perdeuterio) methyl ester derivatives. These methyl esters all bore a vicinal dimethyl group toward the center of the chain. The assignment of the structures was confirmed by isolating one of the very long chain unusual fatty acids as the ester form after methanolysis and performing further analyses including 1H and 13C NMR spectroscopy and Fourier transform infrared spectroscopy. Coupling this information with the data from gas chromatography/mass spectrometry analysis, the exact structure was confirmed as alpha,omega-15,16-dimethyltricotanedioate dimethyl ester. Addition of alcohols, either metabolic (0.25 M ethanol) or nonmetabolic (0.05 M butanol) to cells grown at pH 7.0, or thermal stress (growth temperature at pH 7.0 was raised from 37 to 45 or 55 degrees C) also resulted in the synthesis of these very long chain fatty acids. Synthesis of these very long chain alpha,omega-dicarboxylic acids was reversed by reducing the temperature back to 37 degrees C. S. ventriculi is also unusual in that the membrane components are not the usual phospholipid components but appear to be predominantly glycolipids.  相似文献   

3.
A sulfatide, O-fatty-acylated 3-sulfogalactosylceramide at C6-O on galactoside, was isolated from equine brain and the chemical structure was characterized by proton NMR and MS. The O-acylation site of the acylated sulfatide was determined by the down-field shift of protons attached to a carbon having an O-acyl group in the NMR spectrum and by analysis of a partially methylated derivative before and after acetalization of the intact sulfatide using GC-MS. The O-acyl chain length was determined by GLC, revealing that it exclusively had palmitoyl and stearoyl residues as the major fatty acids. The enzymatic conversion to the O-acyl sulfatide was further examined using equine brain microsomes as an enzyme source and different lipid substrates, resulting in O-acylation of 3-sulfogalactosylceramide from stearoyl CoA, while 6-O-acyl galactosylceramide was not O-sulfated from phosphoadenosine phosphosulfate. The results were supported by the comparably different N-linked fatty acid components between two lipid substrates, in which the component of 6-O-acyl sulfatide was mostly similar to that of sulfatide, but not to 6-O-acyl galactosylceramide.  相似文献   

4.
The purpose of the present study is the investigation of the structure and dynamics of biological membranes using solid-state nuclear magnetic resonance (NMR) spectroscopy. Two approaches are used in our laboratory. The first involves the measurement of high-resolution 13C and 1H spectra obtained by the magic angle spinning (MAS) technique while the second approach involves the measurement of 31P and 2H powder spectra in static samples. This paper will present some recent results obtained by high-resolution solid-state 1H NMR on the conformation of gramicidin A incorporated in a phosphatidylcholine bilayers. More specifically, we were able to observe changes in the gramicidin spectra as a function of the cosolubilization solvent initially used to prepare the samples. The interaction between lipid bilayers and an anticancer drug derived from chloroethylurea was also investigated using proton NMR spectroscopy. Finally, we have studied the interaction between cardiotoxin, a toxic protein extracted from snake venom, and negatively charged lipid bilayers using 31P solid-state NMR spectroscopy.  相似文献   

5.
High-resolution, solid-state 1H nuclear magnetic resonance (NMR) techniques are used for the first time to study germination in imbibed Moravian III barley grains. Whereas magic-angle spinning 1H NMR spectra reveal the water and lipid components in barley grains, combined rotation and multiple-pulse spectroscopy techniques provide 1H NMR spectra of grains that reveal the protein and carbohydrate as well as the water and lipid components. Spectra of grains are compared with spectra of model compounds to verify assignments. 1H T1 and T2 measurements using magic-angle spinning only and combined rotation and multiple-pulse spectroscopy techniques provide information about molecular mobility within the grains during inhibition. Some grains were subjected to artificial aging conditions. 1H NMR spectral comparisons are made between normal, viable grains and artificially aged grains.  相似文献   

6.
Fractionation of the lipid extract of the marine cyanobacterium Lyngbya majuscula collected from Cura?ao afforded two quinoline alkaloids in low yield. Their structures were determined as 4,8-dimethyl-6-O-(2'-4'-di-O-methyl-beta-D-xylopyranosyl)-hydroxyquinoli ne and 4,8-dimethyl-6-hydroxyquinoline on the basis of spectroscopic analysis, mainly 2D NMR spectroscopy.  相似文献   

7.
Artificial neural network (ANN) analysis is a new technique in NMR spectroscopy. It is very often considered only as an efficient "black-box' tool for data classification, but we emphasize here that ANN analysis is also powerful for data quantification. The possibility of finding out the biochemical rationale controlling the ANN outputs is presented and discussed. Furthermore, the characteristics of ANN analysis, as applied to plasma lipoprotein lipid quantification, are compared to those of sophisticated lineshape fitting (LF) analysis. The performance of LF in this particular application is shown to be less satisfactory when compared to neural networks. The lipoprotein lipid quantification represents a regular clinical need and serves as a good example of an NMR spectroscopic case of extreme signal overlap. The ANN analysis enables quantification of lipids in very low, intermediate, low and high density lipoprotein (VLDL, IDL, LDL and HDL, respectively) fractions directly from a 1H NMR spectrum of a plasma sample in < 1 h. The ANN extension presented is believed to increase the value of the 1H NMR based lipoprotein quantification to the point that it could be the method of choice in some advanced research settings. Furthermore, the excellent quantification performance of the ANN analysis, demonstrated in this study, serves as an indication of the broad potential of neural networks in biomedical NMR.  相似文献   

8.
D-Glucose fatty esters at C-6 were obtained by chemoenzymatic synthesis involving 1,2-O-cyclohexylidene-alpha-D-glucofuranose (1) followed by hydrolysis of the cyclohexylidene protecting group. The enzymatic esterification of 1 was performed with fatty acids of variable chain lengths (C8:0 to C18:0). The kinetic of the reaction was studied for each fatty acid and the structure of the octanoyl ester was determined by 1H and 13C NMR spectroscopy.  相似文献   

9.
In vivo 1H NMR spectra of small volumes-of-interest (VOI) were localized in human soleus muscle (8 ml) and compared with volume selective spectra of subcutaneous fat tissue and femoral yellow bone marrow (2 ml). All examinations were performed by the double spin echo (PRESS) localization technique. To provide comparability, spectra of different tissues were recorded using identical sequence timing. Clearly improved resolution of the lipid signals of muscle tissue was obtained using long echo times TE > 200 ms. The spectra of muscle tissue exhibit lipid signals that stem from two compartments with a difference of their resonance frequencies of about 0.2 ppm (Larmor frequency difference 12-13 Hz at 1.5 T). The existence of two fatty acid compartments is supported by measurements of the relaxation times and line shape analysis. Both compartments contain fatty acids or triglycerides with similar composition. Probably one compartment corresponds to fat cells within muscle tissue, the other compartment with lower Larmor frequency is located within muscle cells.  相似文献   

10.
Diphytanoylphosphatidylcholine (DPhPC) has often been used in the study of protein-lipid interaction and membrane channel activity, because of the general belief that it has high bilayer stability, low ion leakage, and fatty acyl packing comparable to that of phospholipid bilayers in the liquid-crystalline state. In this solid-state 31P and 2H NMR study, we find that the membrane packing geometry and headgroup orientation of DPhPC are highly sensitive to the temperature studied and its water content. The phosphocholine headgroup of DPhPC starts to change its orientation at a water content as high as approximately 16 water molecules per lipid, as evidenced by hydration-dependent 2H NMR study at room temperature. In addition, a temperature-induced structural transition in the headgroup orientation is detected in the temperature range of approximately 20-60 degrees C for lipids with approximately 8-11 water molecules per DPhPC. Dehydration of the lipid by one more water molecule leads to a nonlamellar, presumably cubic, phase formation. The lipid packing becomes a hexagonal phase at approximately 6 water molecules per lipid. A phase diagram of DPhPC in the temperature range of -40 degrees C to 80 degrees C is thus constructed on the basis of NMR results. The newly observed hydration-dependent DPhPC lipid polymorphism emphasizes the importance of molecular packing in the headgroup region in modulating membrane structure and protein-induced pore formation of the DPhPC bilayer.  相似文献   

11.
In the present study, analytical techniques including gas chromatography/mass spectrometry (GC/MS)-assisted carbohydrate linkage-analysis, one- and two-dimensional NMR, and matrix-assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-MS) have been used to characterize the structure of the glycolipid associated with the paired helical filaments (PHF) isolated from the neurofibrillary tangles of Alzheimer's diseased brain. The 1H NMR spectrum of acid-hydrolyzed protein-resistant core PHF (prcPHF) displays resonances that can be assigned to fatty acid and glucose. There are no resonances present that would indicate the presence of protein, amino acids, or a sphingosine base. Using two-dimensional homonuclear correlated spectroscopy, homonuclear Hartmann-Hahn, and heteronuclear multiple quantum coherence experiments, resonances in the 1H and 13C NMR spectrum of native PHF were assigned to a nonreducing terminal alpha-1,6-glycosidically linked glucose, an internal alpha-1,6-linked glucose, and an alpha-1,2,6-linked glucose. The narrow line-widths observed for these residues suggest that they arise from glucose residues undergoing rapid segmental motion. The carbohydrate portion of the PHF-associated glycolipid was analyzed using GC/MS linkage analysis and confirmed the presence of terminal and internal alpha-1,6-linked glucose and alpha-1,2,6-linked glucose in a molar ratio of 2:1:1. Three components of the PHF-associated glycolipid fraction having masses 2,416, 2,325, and 2,237 Da were observed using MALDI-MS. The least abundant, heavier mass component (2,416 Da) was best fit to a structure with a tridecamer of glucose having a single esterified C20 fatty acid (Glc13 + C20 or Glc13 + C20:1), whereas the more abundant, lower mass components were best fit to noncovalently associated glycolipid dimers, each with a glucose pentamer or hexamer having two C14, C16, or C18 esterified fatty acids {D[(Glc5 + C18) + (Glc6 + C16)] or D[(Glc5 + C14) + (Glc6 + C14)]}. The ratio of glucose to fatty acid calculated from these best-fit structures of the more abundant mass components (5.5 +/- 1.1:1.0) is in reasonable agreement with the same ratio calculated from peak integrations in the NMR spectra of acid-hydrolyzed prcPHF (6.2 +/- 1.6). Structural similarities between PHF-associated glycolipid and other glycolipid amphiphiles known to form PHF-like filaments indirectly suggest that this unique glycolipid may be an integral component of the PHF suprastructure.  相似文献   

12.
Changes in energy phosphates of rabbit kidneys subjected to ischaemia-reperfusion have been measured in vivo with volume selective 31P NMR spectroscopy. The effects of pretreatment with a new lipid peroxidation inhibitor (indeno-indol derivate--code name H290/51) on the bioenergetic changes were analysed. The left kidney was moved to a subcutaneous pocket to facilitate exact positioning over the surface coil. A 1H NMR image was acquired and a 3.5-mL cube selected for 31P NMR spectra. 31P NMR spectra were recorded before occlusion of the left renal artery, during 1 h of ischaemia and 2 hours of reperfusion. Ischaemia induced drastic changes in the levels of inorganic phosphates and ATP as well as intracellular acidosis. A normalization was observed during reperfusion. Two hours after reperfusion significantly higher values for beta-ATP/Pi and intracellular pH were recorded in the animals pretreated with H290/51. The present technique allows quantitative analyses of changes in kidney bioenergetics in vivo during different experimental conditions. The importance of ischaemia-reperfusion induced lipid peroxidation for mitochondrial function is emphasized.  相似文献   

13.
The polypeptide corresponding to the signal sequence of the M13 coat protein and the five N-terminal residues of the mature protein was prepared by solid-phase peptide synthesis with a 15N isotopic label at the alanine-12 position. Multidimensional solution NMR spectroscopy and molecular modeling calculations indicate that this polypeptide assumes helical conformations between residues 5 and 20, in the presence of sodium dodecylsulfate micelles. This is in good agreement with circular dichroism spectroscopic measurement, which shows an alpha-helix content of approximately 42%. The alpha-helix comprises an uninterrupted hydrophobic stretch of < or = 12 amino acids, which is generally believed to be too short for a stable transmembrane alignment in a biological bilayer. The monoexponential proton-deuterium exchange kinetics of this hydrophobic helical region is characterized by half-lives of 15-75 minutes (pH 4.2, 323 K). When the polypeptide is reconstituted into phospholipid bilayers, the broad anisotropy of the proton-decoupled 15N solid-state NMR spectroscopy indicates that the hydrophobic helix is immobilized close to the lipid bilayer surface at the time scale of 15N solid-state NMR spectroscopy (10(-4) seconds). By contrast, short correlation times, immediate hydrogen-deuterium exchange as well as nuclear Overhauser effect crosspeak analysis suggest that the N and C termini of this polypeptide exhibit a mobile random coil structure. The implications of these structural findings for possible mechanisms of membrane insertion and translocation as well as for membrane protein structure prediction algorithms are discussed.  相似文献   

14.
The human intestinal fatty acid binding protein (I-FABP) is a small (131 amino acids) protein which binds dietary long-chain fatty acids in the cytosol of enterocytes. Recently, an alanine to threonine substitution at position 54 in I-FABP has been identified which affects fatty acid binding and transport, and is associated with the development of insulin resistance in several populations including Mexican-Americans and Pima Indians. To investigate the molecular basis of the binding properties of I-FABP, the 3D solution structure of the more common form of human I-FABP (Ala54) was studied by multidimensional NMR spectroscopy. Recombinant I-FABP was expressed from E. coli in the presence and absence of 15N-enriched media. The sequential assignments for non-delipidated I-FABP were completed by using 2D homonuclear spectra (COSY, TOCSY and NOESY) and 3D heteronuclear spectra (NOESY-HMQC and TOCSY-HMQC). The tertiary structure of human I-FABP was calculated by using the distance geometry program DIANA based on 2519 distance constraints obtained from the NMR data. Subsequent energy minimization was carried out by using the program SYBYL in the presence of distance constraints. The conformation of human I-FABP consists of 10 antiparallel beta-strands which form two nearly orthogonal beta-sheets of five strands each, and two short alpha-helices that connect the beta-strands A and B. The interior of the protein consists of a water-filled cavity between the two beta-sheets. The NMR solution structure of human I-FABP is similar to the crystal structure of rat I-FABP. The NMR results show significant conformational variability of certain backbone segments around the postulated portal region for the entry and exit of fatty acid ligand.  相似文献   

15.
Lipids extracted from Bacillus subtilis using a 2:1 mixture of chloroform and methanol have been found to be very mitogenic. These lipids were fractionated on a silica column and eluted with chloroform, acetone, and 60% methanol in chloroform, and the mitogenic activity was recovered in the last fraction. Further purification of the mitogenic components was achieved by HPLC on an amino-isopropyl bonded-phase column using a linear gradient of 5-20 mM ammonium acetate in a mobile phase consisting of hexane, 2-propanol, methanol, and water (5.5:8:1.5:1). Two major and several minor mitogenic peaks were observed. One major mitogenic lipid was isolated in pure form and structurally characterized by chemical degradation analysis, NMR spectroscopy, and mass spectrometry. Mild acid hydrolysis of the lipid released glycerol phosphate and a neutral glycolipid. Saponification of the lipid released a water-soluble head group and C14-C17 branched fatty acids. Total acid hydrolysis of the head group revealed the presence of glycerol and glucose in a ratio of 1:1. Mild acid hydrolysis of the head group to remove the glycerol phosphate produced a neutral partial head group. The partial head group was methylated and then analyzed by GLC-CIMS and by the reductive-cleavage method, which revealed that it was composed of nonreducing terminal glucopyranosyl, 6-linked glucopyranosyl, and 3-linked glycerol residues in equimolar proportions. Finally, the molecular weight of the permethylated head group, obtained by fast atom bombardment mass spectrometry, was 724.3340, which is consistent with the composition of two glucose residues, one glycerol residue, and one glycerol phosphate residue. On the basis of all these results, the intact mitogenic lipid was identified as 1,2-di-O-acyl-3-O-[6-(sn-glycerol-phospho)-beta-D-glucopyranosyl-(1-->6) - beta-D-glucopyranosyl]glycerol. The purified glycolipid possessed very potent mitogenic activity in a murine splenocyte proliferation assay at a concentration of 0.01-0.1 microgram/mL.  相似文献   

16.
Neutrophils isolated from patients with bacterial infections or stimulated in vitro with lipopolysaccharide (LPS) produce a high resolution, lipid-dominated spectrum on 1H-NMR spectroscopy (May et al, 1993. J. Infect. Dis. 168: 386-392). We have investigated the origin of this lipid signal using NMR and chemical analyses of both whole neutrophils and purified plasma membranes. Plasma membranes from neutrophils that had been stimulated with 50 microg/ml LPS exhibited the high resolution 1H-NMR signal, and contained double the triacylglycerol (TAG) content of plasma membranes isolated from resting cells. Chemical analysis of the whole cells indicated that the TAG also increased at the cellular level (1.7-fold) after stimulation with LPS. Diradylglycerol increased 2- to 3-fold in both whole cells and plasma membranes after stimulation, but was only a minor component compared with TAG. The plasma membrane protein/phospholipid ratio increased 2.6-fold, whereas cholesterol (free and esterified) was unchanged. The membranes from LPS-stimulated neutrophils exhibited increased fluidity, as judged by increased merocyanine 540 binding, consistent with a 2-fold reduction in cholesterol/phospholipid ratio. LPS induced a shift in fatty acid content of whole cell polar lipids towards more oleic acid and less palmitic acid, whereas the neutral lipid fraction contained increased amounts of palmitic and stearic acids. The TAG fraction of plasma membrane lipids contained increased amounts of palmitic acid when prepared from cells stimulated with LPS. We conclude that the 1H-NMR signal in LPS-stimulated neutrophils arises from increased amounts of plasma membrane TAG with an elevated content of palmitic acid.  相似文献   

17.
The use of NMR spectroscopy in combinatorial chemistry has provided a versatile tool for monitoring combinatorial chemistry reactions and for assessing ligand-receptor interactions. The application of magic angle spinning NMR is widespread and has allowed structure determination to be performed on compounds attached to solid supports. A variety of two-dimensional NMR techniques have been applied to enhance the usability of the magic angle spinning NMR data. New developments for solution NMR analysis include high performance liquid chromatography, NMR, mass spectroscopy and flow NMR. NMR based methods currently being investigated may prove valuable as compound screening tools.  相似文献   

18.
A new class of outer membrane lipid (OML) was isolated from the oral spirochete Treponema denticola strain ATCC 33521 using a phenol/chloroform/light petroleum procedure normally applied for lipopolysaccharide extraction. In addition to chemical analysis, Fourier transform infrared (FTIR) spectroscopy was applied to compare the biophysical properties of OML with lipopolysaccharides (LPS) and lipoteichoic acids (LTA). Isolated OML fractions represent 1.4% of the total dry cell weight, are about 4 kDa in size, and contain 6% amino sugars, 8% neutral sugars, 14% phosphate, 35% carbazol-positive compounds, and 11% fatty acids (containing iso- and anteiso-fatty acyl chains). Rare for outer membrane lipids, OML contains no significant amount of 3-deoxy-D-manno-octulosonic acids, heptoses, and beta-hydroxy fatty acids. The fatty acyl chain composition, being similar to that of the cytoplasmic membrane, is quite heterogeneous with anteiso-pentadecanoic acid (12%), palmitic acid (51%), and iso-palmitic acid (19%) as the predominant fatty acids present. Findings of a glycerol-hexose unit and two glycerol-hexadecanoic acid fragments indicate a glycolipid membrane anchor typically found in LTA. There was also no evidence for the presence of a sphingosine-based lipid structure. The results of FTIR measurements strongly suggest that the reconstituted lipid forms normal bilayer structures (vesicles) expressing a high membrane state of order with a distinct phase transition as typical for isolated LPS. However, in contrast to LPS, OML of T. denticola has a lower Tm near 22 degreesC and a lower cooperativity of the phase transition. The results suggest a different kind of permeation barrier that is built up by this particular OML of T. denticola, which is quite different from LPS normally essential for Gram-negative bacteria.  相似文献   

19.
The carbohydrate and lipid components of mycelium and conidia of Fonsecaea pedrosoi (Brumpt) were analysed by paper, thin-layer and gas-chromatography, mass spectrometry and ultraviolet spectroscopy. Glucose, mannose, galactofuranose, rhamnose and glucosamine were polysaccharide components identified in F. pedrosoi. Significant changes in the carbohydrate pattern occurred during the conversion of mycelium into conidia. Rhamnose was predominant in conidia whereas galactose was prominent in mycelium. Palmitic, stearic, oleic, linoleic, and arachidonic acids were the fatty acids identified in the total lipid fraction. Palmitic and oleic acids were major fatty acids. Marked alterations in the fatty acid constituents were observed between the cell types of F. pedrosoi. Arachidonic acid was detected only in conidia and linoleic acid was preferentially identified in mycelium. Differences in the sterol composition was also associated with morphogenesis in F. pedrosoi. Two main sterols, ergosterol and another less polar sterol, not fully characterized, were found in mycelium whereas in conidia only the latter sterol was present.  相似文献   

20.
Bacterial hydroxy fatty acids and alpha-hydroxy fatty acids have been demonstrated in complex lipid extracts of subgingival plaque and gingival tissue. However, little is known about the relationship between these hydroxy fatty acids in plaque and gingival tissues or the significance of these complex lipids in promoting inflammatory periodontal disease. The present study determined the percentages of ester-linked and amide-linked hydroxy fatty acids in complex lipids recovered from plaque and gingival tissue samples and the relationship between bacterial hydroxy fatty acids and alpha-hydroxy fatty acids in the lipid extracts. To evaluate a potential role for these hydroxy fatty acids in inflammatory periodontal disease, gingival tissue samples were examined for a relationship between prostaglandin E2 (PGE2) and hydroxy fatty acids recovered in gingival lipid. This investigation demonstrated that alpha-hydroxy fatty acids are only ester linked in plaque lipids but are largely amide linked in gingival tissue lipids. Furthermore, the level of alpha-hydroxy fatty acid in gingival lipid is directly related to the level of the bacterial hydroxy fatty acid 3-OH iso-branched C17:0 (3-OH iC17:0) in the same lipid extract. However, the relationship between hydroxy fatty acids in gingival lipids does not parallel the fatty acid relationship observed in plaque lipids. Finally, alpha-hydroxy fatty acid levels in gingival tissue lipids correlate directly with the recovery of PGE2 in the same tissue samples. These results demonstrate that alpha-hydroxy fatty acid levels in gingival lipids are directly related to both 3-OH iC17:0 bacterial lipid levels and PGE2 levels. These results indicate that in periodontal tissues there are unusual host-parasite interactions involving penetration of bacterial lipid in association with an altered gingival lipid metabolism and prostaglandin synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号