首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Control of the polymer surface chemistry is a crucial aspect of development of plastic microfluidic devices. When commercially available plastic substrates are used to fabricate microchannels, differences in the EOF mobility from plastic to plastic can be very high. Therefore, we have used polyelectrolyte multilayers (PEMs) to alter the surface of microchannels fabricated in plastics. Optimal modification of the microchannel surfaces was obtained by coating the channels with alternating layers of poly(allylamine hydrochloride) and poly(styrene sulfonate). Polystyrene (PS) and poly(ethylene terephthalate) glycol (PETG) were chosen as substrate materials because of the significant differences in the polymer chemistries and in the EOF of channels fabricated in these two plastic materials. The efficacy of the surface modification has been evaluated using XPS and by measuring the EOF mobility. When microchannels prepared in both PS and PETG are modified with PEMs, they demonstrate very similar electroosmotic mobilities. The PEMs are easily fabricated and provide a means for controlling the flow direction and the electroosmotic mobility in the channels. The PEM-coated microchannels have excellent wettability, allowing facile filling of the channels. In addition, the PEMs produce reproducible results and are robust enough to withstand long-term storage.  相似文献   

2.
Poly (ethylene terephthalate) (PET) was modified by a KrF 248 nm excimer laser with high- (above ablation threshold) and low- (below ablation threshold) fluence. The PET surface develops usually a periodic roughness or ripples with high fluence. The roughness size is in the micron range and the surface shows signs of global melting. However, the ripple size can be reduced to sub-micron level by an irradiation of the sample below the ablation threshold with a polarized beam. The morphology of the irradiated surfaces was examined by scanning electron microscopy (SEM). Chemical surface changes of the materials were characterized by X-ray photoelectron spectroscopy (XPS). The PET modification by high fluence will normally results in the deposition of some yellow to black materials (debris), on the treated surface. The debris are ionized and from carbon rich materials which finally condense forming higher aggregates, resulting in a reduction of O/C ratio. By contrast, modification of PET surfaces by low fluence leads to an oxidation and almost no ablation is detected. The increase of oxygen concentration on low fluence modified surfaces is probably due to a subsequent reaction with atmospheric O2 during irradiation. Our work suggests that a careful selection of laser parameters for the surface modification of polymer is of primary importance. Received: 06 November 2000 / Reviewed and accepted: 07 November 2000  相似文献   

3.
提出一种广泛使用的CO2激光法,以直接读写烧蚀的方式,进行快速的聚甲基丙烯酸甲酯(PMMA)基材的微流控分析芯片的制造.利用此方法所制造的微流道,将以扫描电子显微镜(SEM)、原子力显微镜(AFM)及表面轮廓仪进行各项表面性质的分析.本文所发展的CO2激光烧蚀法,提供了一个可广泛使用及具有经济效应的PMMA基材的微流控分析芯片的制造方法.在此激光制程法中,微流控分析芯片的制造图案可由商业的套装软件绘制而成,再传输至激光系统中进行烧蚀微管道,结果显示利用离焦法的激光制程技术,在没有退火处理的情况下,就可以获得表面相当平滑的微流道,表面粗糙度小于4nm.  相似文献   

4.
Imaging of electroosmotic flow in plastic microchannels   总被引:8,自引:0,他引:8  
We have characterized electroosmotic flow in plastic microchannels using video imaging of caged fluorescent dye after it has been uncaged with a laser pulse. We studied flow in microchannels composed of a single material, poly(methyl methacrylate) (acrylic) or poly(dimethylsiloxane) (PDMS), as well as in hybrid microchannels composed of both materials. Plastic microchannels used in this study were fabricated by imprinting or molding using a micromachined silicon template as the stamping tool. We examined the dispersion of the uncaged dye in the plastic microchannels and compared it with results obtained in a fused-silica capillary. For PDMS microchannels, it was possible to achieve dispersion similar to that found in fused silica. For the acrylic and hybrid microchannels, we found increased dispersion due to the nonuniformity of surface charge density at the walls of the channels. In all cases, however, electroosmotic flow resulted in significantly less sample dispersion than pressure-driven flow at a similar velocity.  相似文献   

5.
A pulsed UV excimer laser (KrF, 248 nm) was used to modify the surface charge on the side wall of hot-embossed microchannels fabricated in a poly(methyl methacrylate) substrate. Subablation level fluences, less than 2,385 mJ/cm2, were used to prevent any changes in the physical morphology of the surface. It is shown that the electroosmotic mobility, induced by an electric field applied along the length of the channel, increases by an average of 4% in the regions that have been exposed to UV laser pulses compared to nonexposed regions. Furthermore, application of UV modification to electroosmotic flow around a 90 degrees turn results in a decrease in band broadening, as measured by the average decrease in the plate height of 40% compared to flow around a nonmodified turn. The ability to modify the surface charge on specific surfaces within a preformed plastic microchannel allows for fine control, adjustment, and modulation of the electroosmotic flow without using wall coatings or changing the geometry of the channel to achieve the desired flow profile.  相似文献   

6.
Laser is a promising technique used for biopolymer surface modification with micro and/or nano features. In this work, a 193 nm excimer laser was used for poly (ethylene terephthalate) (PET) surfaces chemical patterning. The ablation threshold of the PET film used in the experiments was 62 mJ/cm(2) measured before surface modification. Surface chemical patterning was performed by irradiating PET film in a vacuum chamber filled with ammonia at the flux of 10, 15, 20, 25 ml/min. Roughness of the surface characterized by profilometry showed that there were no significant observed change after modification comparing original film. But the hydrophilicity of the surface increased after patterning and a minimum water contact angle was obtained at the gas flux of 20 ml/min. FT-IR/ATR results showed the distinct amino absorption bands presented at 3352 cm(-1)and 1613 cm(-1) after modification and XPS binding energies of C(1s) at 285.5 eV and N(1s) at 399.0 eV verified the existence of C-N bond formation on the PET film surface. Tof-SIMS ions mapping used to identify the amine containing fragments corroborates that amino grafting mainly happened inside the laser irradiation area of the PET surface. A hypothesized radical reaction mechanism proposes that the collision between radicals in ammonia and on the PET surface caused by the incident laser provokes the grafting of amino groups.  相似文献   

7.
This paper demonstrates a chemical surface modification method for covalent attachment of various polymers by using silane-based "click" chemistry on silica surfaces and within glass microchannels suitable for CE systems. Modified surfaces are characterized by contact angle measurements, X-ray photoelectron spectroscopy, and Fourier transform infrared-attenuated total reflection spectroscopy. Electroosmotic flow (EOF) measurements in modified and unmodified channels are provided. Spectroscopic and transport data show that various polymers can be covalently attached to glass surfaces with a measurable change in EOF.  相似文献   

8.
Surface characterization of laser-ablated polymers used for microfluidics   总被引:5,自引:0,他引:5  
Fabrication of microfluidic devices by excimer laser ablation under different atmospheres may provide variations in polymer microchannel surface characteristics. The surface chemistry and electroosmotic (EO) mobility of polymer microchannels laser ablated under different atmospheres were studied by X-ray photoelectron spectroscopy and current monitoring mobility measurements, respectively. The ablated surfaces of PMMA were very similar to the native material, regardless of ablation atmospheres due to the negligible absorption of 248-nm light by that polymer. The substrates studied that exhibit nonnegligible absorption at this energy, namely, poly(ethylene terephthalate glycol), poly(vinyl chloride), and poly(carbonate), showed significant changes in surface chemistry and EO mobility when the ablation atmospheres were varied. Ablation of these three polymer substrates under nitrogen or argon resulted in low EO mobilities with a loss of the well-defined chemical structures of the native surfaces, while ablation under oxygen yielded surfaces that retained native chemical structures and supported higher EO mobilities.  相似文献   

9.
Hybrid dynamic coating using n-dodecyl beta-d-maltoside (DDM) and methyl cellulose (MC) has been developed for suppression of analyte adsorption and electroosmotic flow (EOF) in a poly(methyl methacrylate) (PMMA) channel. The adsorption of APTS-labeled sugars in a PMMA channel was obviously suppressed with DDM dynamic coating; however, EOF was reduced only by a factor of approximately 25%, resulting in irreproducible separations. In contrast, both analyte adsorption and EOF in a PMMA channel were efficiently minimized with MC coating; however, concentrated MC above 0.3% was required to achieve high-performance separations, which greatly increased viscosity of the solution and caused difficulties during buffer loading and rinsing. In addition, n-dodecyltrimethylammonium chloride did not show observable effects on reducing analyte adsorption, although it has the same hydrophobic alkyl chain as DDM. These results strongly indicated that the polysaccharide moiety of surface modifiers has a specific affinity to surface charges and is crucial to achieving efficient and stable dynamic coating on the PMMA surface. Hybrid dynamic coating with 0.25% DDM and 0.03% MC was found to minimize both analyte adsorption and EOF in a PMMA channel to a negligible level, while still keeping a low viscosity of the solution. High-speed and high-throughput profiling of the N-linked glycans derived from alpha1-acid glycoprotein, fetuin, and ribonuclease B was demonstrated in both single-channel and 10-channel PMMA chips using DDM-MC hybrid coating. We propose that DDM-MC hybrid coating might be a general method for suppressing analyte adsorption and EOF in polymer MCE devices. The current MCE-based method might be a promising alternative for high-throughput screening of carbohydrate alterations in glycoproteins.  相似文献   

10.
Nishii J  Yamanaka H 《Applied optics》1997,36(27):6852-6856
Photon-induced property changes of sputter-deposited GeO(2)-SiO(2) thin glass films were investigated. Irradiation with ArF laser pulses induced the changes in refractive index of -10% and volume of +30% in the film without ablation. A Bragg grating with a positive sinusoid wave pattern was printed upon the film by irradiation with ArF excimer laser pulses through a phase mask. The irradiated area could be quickly etched by a HF solution. The ratio of etching rate of irradiated area to unirradiated area was higher than 30. A Bragg grating with a surface relief pattern was successfully formed on the film by irradiation with excimer laser pulses followed by chemical etching. Diffraction efficiency of the gratings increased by 25 times with the etching.  相似文献   

11.
This paper presents a simple procedure for the fabrication of thermoset polyester (TPE) microfluidic systems and discusses the properties of the final devices. TPE chips are fabricated in less than 3 h by casting TPE resin directly on a lithographically patterned (SU-8) silicon master. Thorough curing of the devices is obtained through the combined use of ultraviolet light and heat, as both an ultraviolet and a thermal initiator are employed in the resin mixture. Features on the order of micrometers and greater are routinely reproduced using the presented procedure, including complex designs and multilayer features. The surface of TPE was characterized using contact angle measurements and X-ray photoelectron spectroscopy (XPS). Following oxygen plasma treatment, the hydrophilicity of the surface of TPE increases (determined by contact angle measurements) and the proportion of oxygen-containing functional groups also increases (determined by XPS), which indicates a correlated increase in the charge density on the surface. Native TPE microchannels support electroosmotic flow (EOF) toward the cathode, with an average electroosmotic mobility of 1.3 x 10(-4) cm(2) V(-1) s(-1) for a 50-microm square channel (20 mM borate at pH 9); following plasma treatment (5 min at 30 W and 0.3 mbar), EOF is enhanced by a factor of 2. This enhancement of the EOF from plasma treatment is stable for days, with no significant decrease noted during the 5-day period that we monitored. Using plasma-treated TPE microchannels, we demonstrate the separation of a mixture of fluorescein-tagged amino acids (glycine, glutamic acid, aspartic acid). TPE devices are up to 90% transparent (for approximately 2-mm-thick sample) to visible light (400-800 nm). The compatibility of TPE with a wide range of solvents was tested over a 24-h period, and the material performed well with acids, bases, alcohols, cyclohexane, n-heptane, and toluene but not with chlorinated solvents (dichloromethane, chloroform).  相似文献   

12.
H.K. Lin  R.C. Lin  C.H. Li 《Thin solid films》2010,518(24):7253-7257
Carbon nanotubes (CNTs) have potential as a transparent conductive material with good mechanical and electrical properties. However, carbon nanotube thin film deposition and etching processes are very difficult to pattern the electrode. In this study, transparent CNT film with a binder is coated on a PET flexible substrate. The transmittance and sheet resistance of carbon nanotube film are 84% and 1000 Ω/□, respectively. The etching process of carbon nanotube film on flexible substrates was investigated using 355 nm and 1064 nm laser sources. Experimental results show that carbon nanotube film can be ablated using laser technology. With the 355 nm UV laser, the minimum etched line width was 20 μm with a low amount of recast material of the ablated sections. The optimal conditions of laser ablation were determined for carbon nanotube film.  相似文献   

13.
Copper based superhydrophobic surfaces are fabricated using a laser electrodeposited composite method, which is able to form a dual rough microstructure. It is found that the static contact angles on these special microstructure surfaces are bigger than 150° and rolling angles are smaller than 5° when there is no low energy material coating on surfaces. It is also found that the pressure drops on microchannel surfaces composed with these microstructures show an increasing trend with the widening of channel. Under the condition of laminar flow, they are obviously smaller on superhydrophobic microchannels than on a smooth channel. Owing to the superhydrophobic structures, the friction factor reduces compared with a smooth surface. The biggest reduction value is 48·8%, and the smallest is 46·9%.  相似文献   

14.
Lü T  Xiao Q  Li Z 《Applied optics》2012,51(13):2505-2514
This study clarifies the ablation differences in air and in water for hard biological tissues, which are irradiated by fiber-guided long-pulsed holmium lasers. High-speed photography is used to record the dynamic characteristics of ablation plumes and vaporization bubbles induced by pulsed holmium lasers. The ablation morphologies and depth of hard tissues are quantitatively measured by optical coherence microscopy. Explosive vaporization effects in water play a positive role in the contact ablation process and are directly responsible for significant ablation enhancement. Furthermore, water layer depth can also contribute to ablation performance. Under the same laser parameters for fiber-tissue contact ablation in air and water, ablation performances are comparable for a single-laser pulse, but for more laser pulses the ablation performances in water are better than those in air. Comprehensive knowledge of ablation differences under various environments is important, especially in medical procedures that are performed in a liquid environment.  相似文献   

15.
In this article, a microfluidic platform integrating capillary electrophoresis and bioluminescence (BL) detection that was fabricated in poly(dimethylsiloxane) (PDMS) with lab-on-a-chip technology was demonstrated for cellular metabolic analyses. A microchannels network, "cross combining with Y", was designed to perform on-chip sample preparation, separation, and BL detection of ATP and ATP-conjugated metabolites, using firefly luciferin-luciferase BL system. A dynamic modification of the channel wall of PDMS proved to be crucial to reverse the direction of electroosmotic flow (EOF), which was uniquely achieved by a prewash cycle with a cationic surfactant didodecyldimethylammonium bromide. The influences of surfactant on the EOF and BL reaction were also investigated. Quantitative analyses revealed a dynamic linear range over 2 orders of magnitude for ATP, with a detection limit down to submicromolar (midattomole). The method was validated by measuring cellular ATP of E. coli. with direct on-chip cell lysis. Further work was emphasized on ATP-conjugated metabolite analysis, using galactose as an example. Assays of galactose in human urine samples confirmed the reliability of the protocol, which revealed good prospect of this platform for ATP-conjugated submetabolomic profiling.  相似文献   

16.
The dynamics of the interaction between two delayed plasmas induced by cross-beam pulsed-laser ablation was analyzed by fast photography using narrow interference filters. In this configuration, two perpendicular rotating carbon targets were ablated by two synchronized laser beams generating two interacting plasma plumes. A Nd: yttrium-aluminum-garnet (1064 nm) laser beam is focused onto a target generating a highly directed plume; subsequently an excimer laser (248 nm) produces a second perpendicular plasma, which expands through the plume region generated by the first laser. In the cross-beam configuration, collision processes cause a reduction in the C II ion kinetic energy from ∼ 110 to 35 eV; moreover, the species of the second plasma which travel on the normal direction to the target surface (toward the substrate) are mainly C II. Interaction between plasmas has been compared with laser-induced plume propagation through a background gas in terms to the drag model. Carbon thin films were deposited by the cross-beam technique for different delays between lasers. Raman spectroscopy was employed to study the changes in the bonding carbon films as a function of the kinetic energy of ablated C ions.  相似文献   

17.
杨强  季凌飞  徐博  燕天阳  王文豪  林真源 《光电工程》2017,44(12):1200-1209
采用紫外皮秒激光在As2Se3玻璃表面以线扫描形式快速制备大面积周期性点阵式增透微结构,获得了红外透光性能提高的硫系玻璃样品。研究确定了As2Se3玻璃的激光刻蚀阈值,并研究设计了合适线扫描工艺方法。所制样品相对于原样在波长11.0μm~12.4μm范围内,透过率平均提高10.0%;波长13.0μm~14.2μm范围内,透过率平均提高5.2%。激光扫描制备方法没有破坏样品表面原有的浸润性,整个制备过程均在空气开放环境下进行,成本低,工艺可控性强,效率高,制备8mm×8mm的表面微结构,仅用时3.65s,且表面微结构单元尺寸及间距可按材料应用需求调控。分析表明,当激光能量较低时,对该硫系玻璃的去除以“冷加工”为主,不会有明显的热效应,得到微结构的硫系玻璃表面元素组成未发生改变;激光能量较高时,会存在一定的热效应,使得刻蚀点出现熔融态,在微坑边缘出现凸起或翻边。  相似文献   

18.
Nano-zinc oxide (n-ZnO) was loaded onto multi-walled carbon nanotubes (MWCNTs) via a hydrothermal process. Here pure n-ZnO used for loading was synthesized by the pulsed-laser ablation technique while MWCNTs were used as received. The synthesized MWCNT/ZnO nanocomposites were characterized using x-ray diffraction, field emission scanning electron microscopy, high resolution transmission electron microscopy and Fourier transform infrared spectrometry. A model has been proposed for the structural nature of the alignment of ZnO on the surface of MWCNTs. The photocatalytic activity in the removal of highly toxic substances like cyanide (CN) was carried out in a special reactor using pulsed 355 nm UV generated by the third harmonic of an Nd:YAG laser. In order to understand the cyanide removal process, the study was carried out at different laser irradiation times, incident laser energies, pH of the solution and dosage of the MWCNT/ZnO nanocomposite. The study demonstrated that the CN removal process by MWCNT/ZnO composite has higher photocatalytic activity than pure n-ZnO and MWCNTs alone. The mechanism for the degradation using MWCNT/ZnO has been schematically explained. It was noticed that the oxidation process activity is affected by the pH of the solution, and after 20 min of UV laser irradiation, approximately 90% of CN had been degraded.  相似文献   

19.
A micro/nano‐fabrication process of a nanochannel electroporation (NEP) array and its application for precise delivery of plasmid for non‐viral gene transfection is described. A dip‐combing device is optimized to produce DNA nanowires across a microridge array patterned on the polydimethylsiloxane (PDMS) surface with a yield up to 95%. Molecular imprinting based on a low viscosity resin, 1,4‐butanediol diacrylate (1,4‐BDDA), adopted to convert the microridge‐nanowire‐microridge array into a microchannel‐nanochannel‐microchannel (MNM) array. Secondary machining by femtosecond laser ablation is applied to shorten one side of microchannels from 3000 to 50 μm to facilitate cell loading and unloading. The biochip is then sealed in a packaging case with reservoirs and microfluidic channels to enable cell and plasmid loading, and to protect the biochip from leakage and contamination. The package case can be opened for cell unloading after NEP to allow for the follow‐up cell culture and analysis. These NEP cases can be placed in a spinning disc and up to ten discs can be piled together for spinning. The resulting centrifugal force can simultaneously manipulate hundreds or thousands of cells into microchannels of NEP arrays within 3 minutes. To demonstrate its application, a 13 kbp OSKM plasmid of induced pluripotent stem cell (iPSC) is injected into mouse embryonic fibroblasts cells (MEFCs). Fluorescence detection of transfected cells within the NEP biochips shows that the delivered dosage is high and much more uniform compared with similar gene transfection carried out by the conventional bulk electroporation (BEP) method.  相似文献   

20.
A prototype frequency-quintupled Nd:YAG laser was used with a scanning system to create, on poly(methylmethacrylate) (PMMA) blocks, ablations corresponding to a correction of 6 diopters of myopia by photorefractive keratectomy. The topography of the ablated samples was measured with an optical profilometer to evaluate the smoothness and accuracy of the ablations. The ablation depth was larger than expected. With a 50% to 70% spot overlap, large valleylike variations with a maximum peak-to-peak amplitude of 20 μm were observed. With an 80% spot overlap, the rms surface roughness was 1.3 μm, and the central flattening was 7 diopters. This study shows that optical profilometry can be used to determine precisely the ablation per pulse and the smoothness and accuracy of surface ablations. Knowing the exact ablation per pulse is necessary to produce a smooth and accurate corneal surface by scanning photorefractive keratectomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号