共查询到20条相似文献,搜索用时 15 毫秒
1.
Minoru Nagata Tsuyoshi Kiyotsukuri Susumu Minami Naoto Tsutsumi Wataru Sakai 《Polymer International》1996,39(2):83-89
Poly(ethylene terephthalate) copolymers were prepared by melt polycondensation of dimethyl terephthalate and excess ethylene glycol with 10–40mol% (in feed) of poly(ethylene glycol) (E) and poly(tetramethylene glycol) (B), with molecular weight (MW) of E and B 200–7500 and 1000, respectively. The reduced specific viscosity of copolymers increased with increasing MW and content of polyglycol comonomer. The temperature of melting (Tm), cold crystallization and glass transition (Tg) decreased with the copolymerization. Tm depression of copolymers suggested that the E series copolymers are the block type at higher content of the comonomer. Tg was decreased below room temperature by the copolymerization, which affected the crystallinity and the density of copolymer films. Water absorption increased with increasing content of comonomer, and the increase was much higher for E1000 series films than B1000 series films. The biodegradability was estimated by weight loss of copolymer films in buffer solution with and without a lipase at 37°C. The weight loss was enhanced a little by the presence of a lipase, and increased abruptly at higher comonomer content, which was correlated to the water absorption and the concentration of ester linkages between PET and PEG segments. The weight loss of B series films was much lower than that of E series films. The abrupt increase of the weight loss by alkaline hydrolysis is almost consistent with that by biodegradation. 相似文献
2.
Commercial grade poly(ethylene terephthalate), (PET, intrinsic viscosity = 0.80 dL/g) and poly(butylene terephthalate), (PBT, intrinsic viscosity = 1.00 dL/g) were melt blended over the entire composition range using a counterrotating twin‐screw extruder. The mechanical, thermal, electrical, and rheological properties of the blends were studied. All of the blends showed higher impact properties than that of PET or PBT. The 50:50 blend composition exhibited the highest impact value. Other mechanical properties also showed similar trends for blends of this composition. The addition of PBT increased the processability of PET. Differential scanning calorimetry data showed the presence of both phases. For all blends, only a single glass‐transition temperature was observed. The melting characteristics of one phase were influenced by the presence of the other. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 75–82, 2005 相似文献
3.
Polyester‐polyether segmented block copolymers of poly[(butylene succinate)‐co‐poly(butylene terephthalate)] (PBS–PBT) and poly(tetramethylene glycol) (PTMG) (Mn = 2000) with various compositions were synthesized. PBT content in the PBS was adjusted to ca. 5 mol %. Their thermal and mechanical properties were investigated. In the case of copolymer, the melting point of the PBS–PBT control was 107.8°C, and the melting point of the copolymer containing 70 wt % of PTMG was 70.1°C. Crystallinity of soft segment was 5 ∼ 17%, and that of hard segment was 42 ∼ 59%. The breaking stress of the PBS–PTMG control was 47 MPa but it decreased with increasing PTMG content. In the case of copolymer containing 70 wt % of PTMG, breaking stress was 36 MPa. Contrary to the decreasing breaking stress, breaking strain increased from 300% for PBS–PBT control to 900% for a copolymer containing 70 wt % of PTMG. The shape recovery ratios of the copolymer containing 70 wt % PTMG were almost twice of those of copolymers containing 40 wt % PTMG. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2067–2075, 2001 相似文献
4.
A few percent of poly(butylene)-b-poly(tetramethylene glycol) was able to turn a liquid plasticizer into a gel, and thus imparted yield stresses to the fluid. When the plasticizer contained as little as 2.5 wt % of the block copolymer, sag free plastisols were obtained. A reduction in tensile strength was found for the modified plastisols, while the elongation was not affected. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 749–753, 1997 相似文献
5.
Procedures have been developed for quantitative infra-red spectroscopic measurements on poly(ethylene terephthalate) fibres in conventional yarns. Following computer reconstruction methods already established for films, measurements of molecular orientation and trans/gauche conformer content have been carried out for a wide range of fibres produced by different processing routes. The trans bands can be separated into load-bearing and non-load-bearing conformations, where the former govern the modulus. It is also shown that a quantitative measure of amorphous orientation can be obtained from the infra-red measurements. While there are similarities between the development of overall molecular orientation and changes in molecular conformation for high wind-up speed yarns and drawn yarns produced from a low wind-up speed yarn, there are also major differences, which confirms previous work showing that these two classes of fibres are basically different in structure. These differences are shown by the relationships between the load-bearing trans conformations and the amorphous orientation with the overall orientation. 相似文献
6.
Copolyesters containing poly(ethylene terephthalate) and poly(hexamethylene terephthalate) (PHT) were prepared by a melt condensation reaction. The copolymers were characterised by infrared spectroscopy and intrinsic viscosity measurements. The density of the copolyesters decreased with increasing percentage of PHT segments in the backbone. Glass transition temperatures (Tg). melting points (Tm) and crystallisation temperatures (Tc) were determined by differential scanning calorimetry. An increase in the percentage of PHT resulted in decrease in Tg, Tm and Tc. The as-prepared copolyesters were crystalline in nature and no exotherm indicative of cold crystallisation was observed. The relative thermal stability of the polymers was evaluated by dynamic thermogravimetry in a nitrogen atmosphere. An increase in percentage of PHT resulted in a decrease in initial decomposition temperature. The rate of crystallisation of the copolymers was studied by small angle light scattering. An increase in percentage of PHT resulted in an increase in the rate of crystallisation. 相似文献
7.
L. AlexandrovaA. Cabrera M.A. HernándezM.J. Cruz M.J.M. AbadieO. Manero D. Likhatchev 《Polymer》2002,43(20):5397-5403
Kinetics of transesterification reaction in poly(ethylene terephthalate)-poly(ethylene naphthalate 2,6-dicarboxylate), PET-PEN, blends resulting from melt processing was simulated using model compounds of ethylene dibenzoate (BEB) and ethylene dinaphthoate (NEN). The exchange reaction between BEB and NEN was followed by 1H NMR spectroscopy using signals from the aliphatic protons of ethylene glycol moieties at 4.66 and 4.78 ppm, respectively. The first-order kinetics was established under pseudo-first-order conditions for both reactants. Thus, the overall transesterification reaction was second order reversible. The reversibility was confirmed experimentally by heating a mixed sequence of 1-benzoate 2-naphthoate ethylene (BEN) under similar conditions. Both forward reaction of the equimolar amounts of the reagents and reverse reaction came to equilibrium at the same molar ratio of the reactants and reaction products of roughly 0.25:0.50:0.25 for BEB, BEN, and NEN, respectively. The rate equation for the transesterification reaction in the model system was modified using half-concentration of BEN, which is the only effective in the intermolecular exchange. Direct ester-ester exchange was deduced as a prevailing mechanism for the transesterification reaction under the conditions studied, and the values of equilibrium and rate constants, as well as other basic thermodynamic and kinetic parameters were determined. The use of Zn(OAc)2 as a catalyst resulted in a significant decrease in the activation enthalpy of transesterification, which might be due to the partial switch of the reaction mechanism from primarily pseudo-homolytic to more heterolytic where ZnII acts as a Lewis base which binds to the ester carbonyl oxygen. 相似文献
8.
BACKGROUND: The phase behavior of blends of semicrystalline aryl polyesters with long methylene segments (? (CH2)n? with n = 5 or 7) in the repeat units has not been much studied. Thus, crystalline/crystalline blends comprising monomorphic poly(pentamethylene terephthalate) (PPT) and polymorphic poly(heptamethylene terephthalate) (PHepT) were prepared and the crystal growth kinetics, polymorphism behavior and miscibility in this blend system were probed using polarized‐light optical microscopy, differential scanning calorimetry and wide‐angle X‐ray diffraction. RESULTS: The PPT/PHepT blends of all compositions were first proven to be miscible in the melt state or quenched amorphous phase, whose interaction strength was determined (χ12 = ? 0.35), showing favorable interactions and phase homogeneity. Although the spherulites of neat PPT and PHepT could exhibit ring bands at different crystallization temperature (Tc) ranges (100–110 and 50–65 °C, respectively), the spherulites of PPT/PHepT (50/50) blend became ringless in the range 50–110 °C. Growth analysis and polymorphic behavior in the crystalline phases of the blends provided extra evidence for the miscibility between these two crystalline polymers. Spherulitic growth rates of PPT in the PPT/PHepT blends were significantly reduced in comparison with those of neat PPT. In addition, miscible blending of a small fraction of monomorphic PPT (20 wt%) with polymorphic PHepT altered the crystal stability and led to the originally polymorphic PHepT exhibiting only the β‐crystal form when melt‐crystallized at all values of Tc. CONCLUSION: The highly intimate mixing in polymer chains of crystalline PPT and PHepT causes significant disruption in ring‐band patterns and reduction in crystallization rates of PPT as well as alteration in the polymorphic behavior of PHepT. Copyright © 2009 Society of Chemical Industry 相似文献
9.
Contour maps of dielectric loss tangent within the ranges 0.1 Hz to 3 MHz and ?175 °C to +190 °C are presented for a commercial poly(ethylene terephthalate) (PET) in two initial states of crystallinity. Individual absorption regions resemble those for poly(butylene terephthalate) and are attributed to carbonyl‐driven α‐ and β‐relaxation processes and to Maxwell–Wagner–Sillars polarizations. Possible causes are considered for the asymmetry and structure apparent in the α‐peak of partially crystalline PET. © 2001 Society of Chemical Industry 相似文献
10.
The morphology and crystallization behaviour of random block copolymers of poly(butylene terephthalate) and poly(tetramethylene ether glycol) have been investigated. Single crystals have been grown in thin films crystallized from the melt. Well defined lamellae, exhibiting (hkO) single crystal electron diffraction patterns have been observed in copolymers containing down to 49 wt% (0.83 mole fraction) poly(butylene terephthalate). WAXS and electron diffraction support a model of a relatively pure poly(butylene terephthalate) crystal core with the poly(tetramethylene ether glycol) (soft segment) sequences and short hard segments being rejected to the lamellar surface and the soft segment rich matrix. The lateral dimensions of the lamellae are determined by the number of hard segment sequences long enough to traverse the stable crystal size at the crystallization temperature. This leads to an initial population of crystals formed at Tc and a second set of smaller crystals that grow from the short hard segment sequences upon cooling to room temperature. The result is fractionation by sequence length due to a coupling of the sequence distribution with the stable crystal size at the crystallization temperature. 相似文献
11.
Kinetic and catalytic aspects of the formation of poly(ethylene terephthalate) (PET) have been studied in this work using model molecules such as 2-hydroxyethyl 4-methylbenzoate (MP), 2-hydroxyethyl 4-benzoate (MB), and 2(-hydroxyethyl 4-methylbenzoate) 4-methylbenzoate (DP), synthesized and purified in our laboratories. The methods to obtain these molecules have been described in detail. Many kinetic runs have been performed using different catalysts, such as compounds of Sb, Ti, Zr, Al, Mo (VI), Mn, Zn, Sn (IV), and Ge. We have made kinetic runs on some catalysts under different operative conditions to evaluate the effect of catalyst concentration and temperature on the reaction rate. We have observed that a second-order kinetic law is suitable for both condensation and reverse reaction. All kinetic runs have been interpreted and kinetic parameters determined. Activity can depend on catalyst concentration in a different way for each type of catalyst. Bivalent metals activity is affected by the presence of a substituent in the aromatic ring, unlike tri- and tetravalent metals. Suggestions on the reaction mechanisms conclude the work. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2423–2433, 1998 相似文献
12.
Poly(1,4-trans-cyclohexanediyl-dimethylene terephthalate) has a triclinic unit cell and belongs to the space group P1. The calculated crystalline density of 1.266 g cm−3 indicates that there is only one chain stem per unit cell. The determination of the structure has been made by first building a chain using the bond distances and angles obtained from the single crystal structure determination of 1,4-trans-cyclohexanediyldimethylene dibenzoate a model compound for the above mentioned polyester. Packing analysis followed by an X-ray intensity calculation confirmed the structure. The agreement index has the value of 0.127 at the end of the refinement. The chain conformation and the packing of the chains in the unit cell are discussed and compared with those of other polyesters in the same series, xGT (x = 2, 4 and 6). The ‘flexible’ segment, trans-dimethylene-1,4 cyclohexane, ---O---CH2---(C6H10)---CH2---O---, has the conformation tgt(tgt)tg (g, gauche and t, trans). 相似文献
13.
Sumod Kalakkunnath 《Polymer》2006,47(20):7085-7094
The dynamic mechanical and dielectric relaxation properties of a commercial poly(trimethylene terephthalate) [PTT] have been investigated for both quenched and isothermally melt-crystallized specimen films. The relaxation characteristics of PTT were consistent with those of other low-crystallinity semiflexible polymers, e.g. PET and PEEK. While the sub-glass relaxation was largely unperturbed by the presence of the crystalline phase, both calorimetric and broadband dielectric measurements across the glass transition indicated the existence of a sizeable rigid amorphous phase (RAP) fraction in melt-crystallized PTT owing to the constraining influence of the crystal surfaces over the crystal-amorphous interphase region. A strong increase in measured dielectric relaxation intensity (Δ?) with temperature above Tg indicated the progressive mobilization of the RAP material, as well as an overall loss of correlation amongst the responding dipoles. 相似文献
14.
Ismail Ahmad M. Al Raheil 《Polymer International》1994,35(2):189-195
The melting behaviour and the morphology of poly(ethylene terephthalate) crystallized from the melt are reported. In general, dual or triple melting endotherms are seen, and single endotherms are seen when the samples are crystallized above 215°C for long times. The location of the uppermost endotherm was found to be constant below Tc = 230°C, and above that temperature the location depends on Tc. Therefore, we have shown that samples of PET which are crystallized above Tc = 230°C contain perfect crystals only; below Tc = 230°C, they contain perfect and imperfect crystals. Scanning electron microscopy showed that the perfect crystals are the dominant lamellae in the spherulitic structure, while the imperfect crystals are the subsidiary lamellae in the spherulitic structure, The amorphous regions are located between individual lamellae. 相似文献
15.
Broad line nuclear magnetic resonance measurements have been carried out on oriented poly(tetramethylene terephthalate). The second moment was determined as a function of specimen orientation for the polymer in its unstrained state, and also under extension, where previous X-ray diffraction measurements have shown that the crystal structure changes from the α form (relaxed) to the β form (strained). The n.m.r. results for the stretched specimen are consistent with the molecular conformation being close to full extension, and agree quantitatively with the crystal structure proposed by Hall and Pass. The n.m.r. results for the unstrained material are, however, not in agreement with any of the crystal structures which have been proposed and suggest that, contrary to present conclusions, the conformation and orientation of the central methylene pairs in the glycol residue must remain substantially unchanged in the transformation from the α to the β form. 相似文献
16.
The molecular structure of the copolyester formed through the interchange reaction in poly(ethylene terephthalate)/poly(butylene terephthalate) blends was investigated with 13C-NMR spectroscopy. The molar fractions of heterolinkage triads in the copolyesters were lower than the values calculated by Bernoullian statistics; this indicates that the sequence of heterolinkages was far from a random distribution at the initial stage of the interchange reaction. However, the randomness increased and the number-average sequence length decreased with reaction time. The solubility of the blend decreased with increasing sequence length, resulting from the formation of block copolymers with long sequence lengths at the initial stage of the interchange reaction. The solubility of the copolyester formed by a dibutyltin dilaurate (DBTDL)-catalyzed reaction was higher than that of the copolyester formed by a titanium tetrabutoxide-catalyzed reaction; this is related to the fact that alcoholysis prevailed in the DBTDL-catalyzed reaction. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 159–168, 2001 相似文献
17.
The thermal degradation and flame retardancy of poly(butylene terephthalate) (PBT) were studied with a focus on the effect of phosphorous compounds. Thermogravimetric analysis, pyrolysis/gas chromatography/mass spectrometry (Py/GC/MS), and elemental analysis were used to analyze the flame retardancy, which were observed by an Underwriters Laboratory UL‐94 test and a cone calorimeter. The 50% degradation temperatures of PBT blends with phosphorous compounds were the same as that of neat PBT. Six scission products were assigned by Py/GC/MS. The burning times of the UL test of several PBT blends were much shorter than that of neat PBT. The relation between flame retardancy and thermal degradation was analyzed with respect to the results of the scission products and the char in burned polymers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2326–2333, 2004 相似文献
18.
Blending of thermotropic liquid crystalline polyesters (LCPs) with conventional polymers could result in materials that can be used as an alternative for short fiber‐reinforced thermoplastic composites, because of their low melt viscosity as well as their inherent high stiffness and strength, high use temperature, and excellent chemical resistance and low coefficient of expansion. In most of the blends was used LCP of 40 mol % of poly(ethylene terephthalate) (PET) and 60 mol % of p‐acetoxybenzoic acid (PABA). In this work, blends of several copolyesters having various PABA compositions from 10 to 70 mol % and poly(butylene terephthalate) (PBT) were prepared and their rheological and thermal properties were investigated. For convenience, the copolyesters were designated as PETA‐x, where x is the mol % of PABA. It was found that PET‐60 and PET‐70 copolyesters decreased the melt viscosity of PBT in the blends and those PBT/PETA‐60 and PBT/PETA‐70 blends showed different melt viscosity behaviors with the change in shear rate, while blends of PBT and PET‐x having less than 50 mol % of PABA exhibited totally different rheological behaviors. The blends of PBT with PETA‐50, PETA‐60, and PETA‐70 showed the morphology of multiple layers of fibers. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1797–1806, 1999 相似文献
19.
Direct current (dc) and alternating current (ac) electrical behavior of a laboratory‐synthesized semicrystalline poly(propylene terephthalate) is investigated. The dc charging/discharging currents and electrical conductivity are studied as a function of temperature and time of applied voltage. The conduction mechanisms are pointed out and related to the structural characteristics of the polymer. The ac properties (dielectric constant and loss factor) are investigated over a wide temperature and frequency range. The relaxation processes, which take place in the material, are disclosed and their origin is analyzed. The electrical behavior of poly(propylene terephthalate) is finally related to that shown by other thermoplastic polyesters. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2271–2275, 2002 相似文献
20.
The microstructure of blends of bisphenol A polycarbonate (PC), and poly(ethylene terepthalate) (PETP) has been studied by solvent extraction, infrared spectrophotometry, differential scanning calorimetry and dynamic mechanical thermal analysis. The blends appear to contain two amorphous phases over the whole composition range. The tensile behaviour and the Charpy impact strength of some of the blends have been determined, before and after heat treatment at 125°C for 18 hours. Improved performance of the blends, compared with that of the homopolymers PC and PETP, has been demonstrated. 相似文献