首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a self-aligned, refractory metal gate contact, enhancement mode, GaAs junction field effect transistor (JFET) where all impurity doping was done by ion implantation. Processing conditions are presented for realizing a high gate turn-on voltage (~1.0 V at 1 mA/mm of gate current) relative to GaAs MESFET's. The high gate turn-on voltage is the result of optimizing the p+-gate implant and anneal to achieve a nonalloyed ohmic contact between the implanted p+-GaAs and the sputter deposited tungsten gate contact. Initial nominally 1.0 μm×50 μm n-JFET's have a transconductance of 85 mS/mm and ft of 11.4 GHz  相似文献   

2.
SiNx/InP/InGaAs doped channel passivated heterojunction insulated gate field effect transistors (HIGFETs) have been fabricated for the first time using an improved In-S interface control layer (ICL). The insulated gate HIGFETs exhibit very low gate leakage (10 nA@VGS =±5 V) and IDS (sat) of 250 mA/mm. The doped channel improves the DC characteristics and the HIGFETs show transconductance of 140-150 mS/mm (Lg=2 μm), ft of 5-6 GHz (Lg=3 μm), and power gain of 14.2 dB at 3 GHz. The ICL HIGFET technology is promising for high frequency applications  相似文献   

3.
We report on the noise performance of low power 0.25 μm gate ion implanted D-mode GaAs MESFETs suitable for wireless personal communication applications. The 0.25 μm×200 μm D-mode MESFET has a ft of 18 GHz and fmax of 33 GHz at a power level of 1 mW (power density of 5 mW/mm). The noise characteristics at 4 GHz for the D-mode MESFET are Fmin=0.65 dB and Gassoc =13 dB at 1 mW. These results demonstrate that the GaAs D-mode MESFET is also an excellent choice for low power personal communication applications  相似文献   

4.
The microwave characteristics at 18 and 20 GHz of submicron-gate indium phosphide (InP) metal-insulator-semiconductor field-effect transistors (MISFETs) for high output power density applications are presented. InP power MISFETs were fabricated with 0.7 μm gate lengths, 0.2 mm gate widths, and drain-source spacings of 2, 3 and 5 μm. The output power density was investigated as a function of drain-source spacing. The best output power density and gain were obtained for drain-source spacings of 3 μm. At 18 GHz output power densities of 1.59 W/mm with a gain of 3.47 dB and a power-added efficiency of 20.0% were obtained for a drain-source spacing of 3 μm. At 20 GHz output power densities of 1.20 W/mm with a gain of 3.17 dB and a power-added efficiency of 13.6% were obtained for a drain-source spacing of 3 μm  相似文献   

5.
High-frequency performance of diamond field-effect transistor   总被引:1,自引:0,他引:1  
The microwave performance of a diamond metal-semiconductor field-effect transistor (MESFET) is reported for the first time. MESFETs with a gate length of 2-3 μm and a source-gate spacing of 0.1 μm were fabricated on the hydrogen-terminated surface of an undoped diamond film grown by microwave plasma chemical vapor deposition (CVD) utilizing a self-aligned gate fabrication process. A maximum transconductance of 70 mS/mm was obtained on a 2 μm gate MESFET at VGS=-1.5 V and VDS=-5 V,for which a cutoff frequency fT and a maximum oscillating frequency fmax of 2.2 GHz and 7 GHz were obtained, respectively  相似文献   

6.
A high performance BiCMOS technology, BEST2 (Bipolar Enhanced super Self-aligned Technology) designed for supporting low-power multiGHz mixed-signal applications is presented. Process modules to produce low parasitic device structures are described. The developed BiCMOS process implemented with 1 μm design rules (0.5 μm as one nesting tolerance) has achieved fl and fmax for npn bipolar (Ae=1×2 μm2) of 23 GHz and 24 GHz at Vce=3 V, respectively, with BVceo⩾5.5 volts, and βVA product of 2400. Typical measured ECL gate delay is 48 ps/37 ps per stage (Ae=1×2 μm2 ; 500 mV swing) at 0.6 mA/2.1 mA switching currents, and CMOS gate delay (gate oxide=125 Å, Leff=0.6 μm; Vth,nch =0.45 V; Vth,pch=-0.45 V) 70 ps/stage. A BiCMOS phase-locked-loop (emitter width=1 μm; gate Leff=0.7 μm) has achieved 6 GHz operation at 2 V power supply with total power consumption of 60 mW  相似文献   

7.
First dc, small signal, and RF power characteristics of GaN/InGaN doped-channel heterojunction field effect transistors (HFETs) are reported. HFETs with a 1-μm gate length have demonstrated a maximum drain current of 272 mA/mm, a flat Gm around 65 mS/mm in a V GS between -0.65 V and +2.0 V, and an on-state breakdown voltage over 50 V. Complete pinchoff was observed for a -3.5 V gate bias. Devices with a 1-μm gate length have exhibited an fT of 8 GHz and fmax of 20 GHz. A saturated output power of 26 dBm was obtained at 1.9 GHz for a 1 μm×1 mm device  相似文献   

8.
The first Ga0.51In0.49P channel MESFETs grown on a (100) GaAs substrate by GSMBE have been fabricated. A high gate-to-drain breakdown voltage of 42 V with a high maximum current density (320 mA/mm) was achieved. This result demonstrates that high-breakdown voltage could be attained by using Ga0.51In 0.49P as the channel material. We also measured a high-maximum oscillation frequency (fmax) of 30 GHz for a 1.5 μm gate-length device. This value is quite high compared with other high-breakdown-voltage GaAs MESFET's or MISFET's with the same gate length  相似文献   

9.
Trapping effects and microwave power performance in AlGaN/GaN HEMTs   总被引:14,自引:0,他引:14  
The dc small-signal, and microwave power output characteristics of AlGaN/GaN HEMTs are presented. A maximum drain current greater than 1 A/mm and a gate-drain breakdown voltage over 80 V have been attained. For a 0.4 μm gate length, an fT of 30 GHz and an fmax of 70 GHz have been demonstrated. Trapping effects, attributed to surface and buffer layers, and their relationship to microwave power performance are discussed. It is demonstrated that gate lag is related to surface trapping and drain current collapse is associated with the properties of the GaN buffer layer. Through a reduction of these trapping effects, a CW power density of 3.3 W/mm and a pulsed power density of 6.7 W/mm have been achieved at 3.8 GHz  相似文献   

10.
InP HEMTs with a double recess 0.12 μm gate have been developed. The material structure was designed to be fully selective etched at both recess steps for improved uniformity and yield across the whole wafer. Devices demonstrated DC characteristics of extrinsic transconductances of 1000 mS/mm, maximum current density of 800 mA/mm and gate-drain reverse breakdown voltages of -7.8 V. Power measurements were performed at both 20 GHz and 60 GHz. At 20 GHz, the 6×75 μm devices yielded 65% maximum power added efficiency (PAE) with associated gain of 13.5 dB and output power of 185 mW/mm. When tuned for maximum output power it gave an output power density of 670 mW/mm with 15.6 dB gain and 49% PAE. At 60 GHz, maximum PAE of 30% has been measured with associated output power density of 290 mW/mm and gain of 7.4 dB. This represents the best power performance reported for InP-based double recess HEMT's  相似文献   

11.
A double-pulse-doped InAlGaAs/In0.43Ga0.57As metamorphic high electron mobility transistor (MHEMT) on a GaAs substrate is demonstrated with state-of-the-art noise and power performance, This 0.15 μm T-gate MHEMT exhibits high on- and off-state breakdown (Vds>6 V and Vdg>13 V, respectively) which allows biasing at Vds>5 V. The 0.6 mm device shows >27 dBm output power (850 mW/mm) at 35 GHz-the highest reported power density of any MHEMT. Additionally, a smaller gate periphery 2×50 μm (0.1 mm) 43% MHEMT exhibits a Fmin=1.18 dB and 10.7 dB associated gain at 25 GHz, and also is the first noise measurement of a -40% In MHEMT. A double recess process with selective etch chemistries provides for high yields  相似文献   

12.
A novel structure Ga0.51In0.49P/GaAs MISFET with an undoped Ga0.51In0.49P layer serving as the airbridge between active region and gate pad was first designed and fabricated. Wide and flat characteristics of gm and fmax versus drain current or gate voltage were achieved. The device also showed a very high maximum current density (610 mA/mm) and a very high gate-to-drain breakdown voltage (25 V). Parasitic capacitances and leakage currents were minimized by the airbridge gate structure and thus high fT of 22 GHz and high fmax of 40 GHz for 1 μm gate length devices were attained. To our knowledge, both were the best reported values for 1 μm gate GaAs channel FET's  相似文献   

13.
High performance p-type modulation-doped field-effect transistors (MODFET's) and metal-oxide-semiconductor MODFET (MOS-MODFET) with 0.1 μm gate-length have been fabricated on a high hole mobility SiGe-Si heterojunction grown by ultrahigh vacuum chemical vapor deposition. The MODFET devices exhibited an extrinsic transconductance (gm) of 142 mS/mm, a unity current gain cut-off frequency (fT) of 45 GHz and a maximum oscillation frequency (fMAX) of 81 GHz, 5 nm-thick high quality jet-vapor-deposited (JVD) SiO2 was utilized as gate dielectric for the MOS-MODFET's. The devices exhibited a lower gate leakage current (1 nA/μm at Vgs=6 V) and a wider gate operating voltage swing in comparison to the MODFET's. However, due to the larger gate-to-channel distance and the existence of a parasitic surface channel, MOS-MODFET's demonstrated a smaller peak g m of 90 mS/mm, fT of 38 GHz, and fmax of 64 GHz. The threshold voltage shifted from 0.45 V for MODFET's to 1.33 V for MOS-MODFET's. A minimum noise figure (NFmin) of 1.29 dB and an associated power gain (Ga) of 12.8 dB were measured at 2 GHz for MODFET's, while the MOS-MODFET's exhibited a NF min of 0.92 dB and a Ga of 12 dB at 2 GHz. These DC, RF, and high frequency noise characteristics make SiGe/Si MODFET's and MOS-MODFET's excellent candidates for wireless communications  相似文献   

14.
A low-power CMOS dual-modulus (divide-by-128/129) prescaler IC is described. The IC has been fabricated with symmetric CMOS technology that optimizes simultaneously the characteristics of both the p-channel and n-channel transistors for low-power-supply-voltage operation. Two different gate oxide thicknesses of 175 and 100 Å have been used. The best prescalar fabricated with 175-Å gate oxide functions at 2.06 GHz with 25-m W power consumption (Leff=0.5 μm; Vdd=3.5 V). Preliminary results for prescalars fabricated with 100-Å gate oxide show that 4.2-GHz operation is possible (Leff=0.4 μm; V dd=3.5 V). Power-supply voltage as low as 1.7 V can be used for the prescalar to function at 1 GHz with a power consumption of only 4 mW  相似文献   

15.
The design, fabrication, and characterization of 0.1 μm AlSb/InAs HEMT's are reported. These devices have an In0.4Al 0.6As/AlSb composite barrier above the InAs channel and a p + GaSb layer within the AlSb buffer layer. The HEMT's exhibit a transconductance of 600 mS/mm and an fT of 120 GHz at VDs=0.6 V. An intrinsic fT of 160 GHz is obtained after the gate bonding pad capacitance is removed from an equivalent circuit. The present HEMT's have a noise figure of 1 dB with 14 dB associated gain at 4 GHz and VDs=0.4 V. Noise equivalent circuit simulation indicates that this noise figure is primarily limited by gate leakage current and that a noise figure of 0.3 dB at 4 GHz is achievable with expected technological improvements. HEMT's with a 0.5 μm gate length on the same wafer exhibit a transconductance of 1 S/mm and an intrinsic fTLg, product of 50 GHz-μm  相似文献   

16.
Surface passivation of undoped AlGaN/CaN HEMT's reduces or eliminates the surface effects responsible for limiting both the RF current and breakdown voltages of the devices. Power measurements on a 2×125×0.5 μm AlGaN/GaN sapphire based HEMT demonstrate an increase in 4 GHz saturated output power from 1.0 W/mm [36% peak power-added efficiency (PAE)] to 2.0 W/mm (46% peak PAE) with 15 V applied to the drain in each case. Breakdown measurement data show a 25% average increase in breakdown voltage for 0.5 μm gate length HEMT's on the same wafer. Finally, 4 GHz power sweep data for a 2×75×0.4 μm AlGaN/GaN HEMT on sapphire processed using the Si3N4 passivation layer produced 4.0 W/mm saturated output power at 41% PAE (25 V drain bias). This result represents the highest reported microwave power density for undoped sapphire substrated AlGaN/GaN HEMT's  相似文献   

17.
Depositing gate metal across a step undercut between the Schottky barrier layer and the insulator-like layer is employed to obtain a reduced gate length of 0.4 mum with an additional 0.6-mum field plate from a 1-mum gate window. Most dc and ac characteristics including current density (IDSS=451mA/mm), transconductance (gm,max=225mS/mm), breakdown voltages (VBD(DS)/V BD(GD)=22/-25.5V), gate-voltage swing (GVS=2.24V), cutoff, and maximum oscillation frequencies (ft/fmax=17.2/32GHz) are improved as compared to those of a 1-mum gate device without field plate. At a VDS of 4.0 V, a maximum power added efficiency of 36% with an output power of 13.9 dBm and a power gain of 8.7 dB are obtained at a frequency of 1.8 GHz. The saturated output power and the linear power gain are 316 mW/mm and 13 dB, respectively  相似文献   

18.
We report the first microwave power measurement on GaN FET's. At 2 GHz, a class A output power density of 1.1 W/mm with a power added efficiency of 18.6% was obtained on a 1 μm gate-length AlGaN/GaN MODFET. Mathematical simulation estimated that the transistor was operating at a channel temperature of 360°C as a result of the poor thermal conductivity of the sapphire substrate. Despite this serious heating problem, the power output density still rivals GaAs MESFET's  相似文献   

19.
P-channel Heterostructure Field Effect Transistors (HFETs) with a 0.3-μm gate were fabricated by Mg ion implantation. The maximum transconductance was 68 mS/mm and there was no serious drain or gate leakage current, regardless of this short gate length. The gate turn on voltage (@Igs=-1 μA/μm) was -2.1 V and its absolute value was large enough for use in complementary HFETs. S-parameters measurements showed a very high cut-off frequency of over 10 GHz. Results indicated the superiority of less-diffusive Mg ion implantation for forming p+-layer in p-channel HFETs  相似文献   

20.
We report on the microwave operation of 1 μm gate AlGaN/GaN doped channel heterostructure field effect transistors (DC-HFET's) with the cutoff frequency fT of 18.3 GHz. These devices exhibit the cutoff frequency-gate length product in excess of 18 GHz·μm, comparable to that of the state-of-the-art GaAs MESFET's. We explain these improvements in the device performance by the increased sheet carrier density in the device channel and by a reduction in the parasitic series resistances, caused by doping the device channel  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号