首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
针对工艺操作说明文本中的命名实体,提出一种基于BiLSTM-CRF模型与词典、规则相结合的识别方法,旨在识别图纸编号、参考标准、零件和零件号等11种实体。基于BiLSTM-CRF模型,使用BERT模型预训练的向量,对相关命名实体进行初始识别;针对工艺操作说明文本中零件和零件号表达方式复杂多样的问题,使用基于词典和规则的方法对此类实体的标注结果进行校正。实验结果表明,该方法在工艺操作说明文本中能较好地完成命名实体识别任务,在测试语料上F1值达到94.03%,比基线提升了4.14%。  相似文献   

2.
针对语言普遍存在的字符间非线性关系,为捕获更丰富的语义特征,提出了一种基于图卷积神经网络(GCN)和自注意力机制的命名实体识别(NER)方法。首先,借助深度学习方法有效提取字符特征的能力,采用GCN学习字符间的全局语义特征,并且采用双向长短时记忆网络(BiLSTM)提取字符的上下文依赖特征;其次,融合以上特征并引入自注意力机制计算其内部重要度;最后,使用条件随机场(CRF)从融合特征中解码出最优的编码序列,并以此作为实体识别的结果。实验结果表明,与单一采用BiLSTM和CRF的方法相比,所提方法在微软亚洲研究院(MSRA)数据集和BioNLP/NLPBA 2004数据集上的精确率分别至少提高了2.39%和15.2%。可见该方法在中文和英文数据集上都具备良好的序列标注能力,且泛化能力较强。  相似文献   

3.
针对语言普遍存在的字符间非线性关系,为捕获更丰富的语义特征,提出了一种基于图卷积神经网络(GCN)和自注意力机制的命名实体识别(NER)方法。首先,借助深度学习方法有效提取字符特征的能力,采用GCN学习字符间的全局语义特征,并且采用双向长短时记忆网络(BiLSTM)提取字符的上下文依赖特征;其次,融合以上特征并引入自注意力机制计算其内部重要度;最后,使用条件随机场(CRF)从融合特征中解码出最优的编码序列,并以此作为实体识别的结果。实验结果表明,与单一采用BiLSTM和CRF的方法相比,所提方法在微软亚洲研究院(MSRA)数据集和BioNLP/NLPBA 2004数据集上的精确率分别至少提高了2.39%和15.2%。可见该方法在中文和英文数据集上都具备良好的序列标注能力,且泛化能力较强。  相似文献   

4.
针对网购评论命名实体识别中重要词汇被忽略的问题,在评论短文本处理基础上,借鉴多头注意力机制、词汇贡献度和双向长短时记忆条件随机场提出一种基于MA-BiLSTM-CRF模型的网购评论命名实体识别方法。首先,用词向量和词性向量的组合来表示评论文本语义信息;其次,用BiLSTM提取文本特征;然后,引入多头注意力机制从多层面、多角度提升模型性能;最后,用条件随机场(CRF)识别命名实体。实验结果表明,该方法能提升网购评论实体识别效果。  相似文献   

5.
针对命名实体识别方法中语义分析不足及准确率较低的问题,提出一种基于BERT模型的混合神经网络实体识别方法.对命名实体识别研究现状进行了调查与分析,发现现有命名实体识别研究中存在数据分析与特征提取不充分导致准确率较低的问题.利用BERT预训练语言模型动态生成字的语义向量,丰富其文本特征.使用卷积神经网络(convolut...  相似文献   

6.
植物属性文本的命名实体识别对林业领域的信息抽取和知识图谱的构建起着重要的作用,针对该问题,提出了一种基于双向长短时记忆网络(BiLSTM)、卷积神经网络(CNN)和条件随机场(CRF)模型的植物属性文本命名实体识别方法 BCC-P。分析了植物属性文本的特点,并进行预处理和标注,完成数据集的构建。BCC-P方法通过BiLSTM模型对植物属性文本进行建模,有效捕捉植物属性文本中的上下文语义特征。将获得的特征传递到CNN模型,进一步提取深度特征。最后使用了CRF模型进行植物属性文本的标注,输出在句子序列上最优的标注结果。在植物属性文本语料上的实验表明,该方法的准确率达到了91.8%,因此能够有效应用于植物属性文本的命名实体识别任务。  相似文献   

7.
现有的维吾尔文命名实体识别主要采用基于条件随机场的统计学习方法,但依赖于人工提取的特征工程和领域知识。针对该问题,该文提出了一种基于深度神经网络的学习方法,并引入不同的特征向量表示。首先利用大规模未标注语料训练的词向量模型获取每个单词具有语义信息的词向量;其次,利用Bi-LSTM提取单词的字符级向量;然后,利用直接串联法或注意力机制处理词向量和字符级向量,进一步获取联合向量表示;最后,用Bi-LSTM-CRF深度神经网络模型进行命名实体标注。实验结果表明,以基于注意力机制的联合向量表示作为输入的Bi-LSTM-CRF方法在维吾尔文命名实体识别上F值达到90.13%。  相似文献   

8.
为实现非结构化工艺规程文本中关键信息的高效识别,建立一种基于机加工领域词典和神经网络的命名实体识别模型.首先,结合机加工领域词典与jieba分词技术进行数据集的自动标注,并在对工艺参数信息进行标注的过程中将数字和标志字母划分为一个分词单位以增强后续特征提取效果;其次,在word2vec词嵌入的基础上,采用双向长短时记忆网络对文本进行特征提取;最后,采用条件随机场综合上下文逻辑以提高关键工艺信息的识别准确率.在包含431条工步内容的数据集上,对所提模型的识别效果进行实验,结果表明,所提模型的准确率、召回率和F1值分别为90.20%,93.88%和92.00%,在与领域内传统模型的对比上具有一定优势,并使用3个不同工艺规程数据集验证了该模型的鲁棒性.  相似文献   

9.
为了减少传统的命名实体识别需要人工制定特征的大量工作,通过无监督训练获得军事领域语料的分布式向量表示,采用双向LSTM递归神经网络模型解决军事领域命名实体的识别问题,并且通过添加字词结合的输入向量和注意力机制对双向LSTM递归神经网络模型进行扩展和改进,进而提高军事领域命名实体识别。实验结果表明,提出的方法能够完成军事领域命名实体的识别,并且在测试集语料上的F-值达到了87.38%。  相似文献   

10.
嵌套命名实体之间蕴含着丰富的语义关系与结构信息,开发能够准确识别嵌套命名实体的算法具有重要研究意义。针对现有的中文嵌套命名实体数据集中存在错标漏标以及现有识别方法大多忽略嵌套实体内部信息关联关系而导致准确性下降的问题,结合自动生成与手动标注的方法构建新的中文嵌套命名实体数据集NEPD,在此基础上,设计一种利用分层区域穷举的中文嵌套命名实体识别模型。该模型通过遍历文本组合实体,获取低层编码层的词嵌入信息;其次,为使邻接编码层之间实现信息交换,将低层编码层的词嵌入信息融入高层编码层;最后,利用多层解码层使长度为L的命名实体仅在第L层预测,有效防止错误传播现象发生从而提高识别准确度。实验结果表明,在没有外部知识资源的情况下,LREM模型在嵌套命名实体与非嵌套命名实体上的识别F1值分别达到87.19%和86.27%,其中非嵌套命名实体识别的F1值比传统的BiLSTM+CRF模型提升1.18%,验证了该模型的可靠性。  相似文献   

11.
命名实体识别是构建知识图谱的重要阶段。基于国军标及软件测试文档,完成了实体类型分类以及数据集的构建和标注。在软件测试领域,针对字词联合实体识别方法准确率不高的问题,进行字符级特征提取方法的改进,提出了CWA-BiLSTM-CRF识别框架。该框架包含两部分:第一部分构建预训练的字词融合字典,将字词一起输入给双向长短期记忆网络进行训练,并加入注意力机制衡量词内各字对特征的语义贡献,提取出字符级特征;第二部分将字符级特征与词向量等特征进行拼接,输入给双向长短期记忆网络进行训练,再通过条件随机场解决标签结果序列不合理的问题,识别出文中的实体。实验结果分别与三种常用的深度学习字符级特征提取方法进行比较,准确率和召回率均有提升,最优F1值为88.93%。实验表明,改进后的方法适用于军用软件测试领域命名实体识别任务,为下一步知识图谱的构建打下了基础。  相似文献   

12.
简要案情是公安机关为提高"协同办案系统"录入信息质量,确保信息检索与案件串并工作高效开展而对案情记载的简要描述,其中各类实体间包含了大量与受害者和作案人相关的案情信息.因此,对简要案情文本的深度挖掘是掌握案件始末和分析案情的有效手段之一.简要案情文本中的实体稠密分布、实体间相互嵌套以及实体简称,给准确捕捉案件实体带来了...  相似文献   

13.
命名实体识别是构建时钟领域知识图谱的关键步骤,然而目前时钟领域存在标注样本数量少等问题,导致面向时钟领域的命名实体识别精度不高。为此,利用预训练语言模型BERT进行时钟领域文本的特征提取,利用线性链条件随机场(Linear-CRF)方法进行序列标注,提出了一种BERT-LCRF的命名实体识别模型。对比实验结果表明,该模型能够充分学习时钟领域的特征信息,提升序列标注精度,进而提升时钟领域的命名实体识别效果。  相似文献   

14.
人工智能技术的发展推动了医疗领域的智能化,为提升医疗效率、改善医疗水平提供了新的助力。同时,这一新的趋势也催生了海量的电子病历文本,其所蕴含的丰富信息具有巨大的潜在挖掘与应用价值。然而,当前中文电子病历的命名实体识别研究工作并没有全面考虑中文及中文医疗领域的特殊性,而是将面向通用数据集的模型迁移到医疗领域的实体类型中,分析效果较为有限。针对这一问题,该文设计了长短期记忆网络与条件随机场的联合模型并引入BERT模型;在此基础之上,考虑到医疗领域命名实体鲜明的部首特征,通过将部首信息编码到字向量中,并且结合部首信息修改条件随机场层得分函数的计算方式,有效地提升了医疗领域命名实体的抽取能力。通过两项电子病历数据集的实验结果表明,该文提出的模型整体效果略高于通用的实体识别模型,并对疾病诊断等特定类型的实体词的识别效果具有较为明显的提升。  相似文献   

15.
从海量生物医学文献中挖掘变异信息对生物医学复杂疾病研究具有重要意义。在当前的变异实体识别方法中,基于条件随机场模型的方法取得了不错效果并成为主流方法,但存在需要大量特征工程来提升模型性能的缺点。针对此问题,该文提出一种基于字符卷积神经网络的变异实体识别方法CharCNN-CNN-CRF。该方法首先利用一个多窗口大小的卷积神经网络获取字符级别的词表示,然后使用多层卷积神经网络编码上下文信息,最后通过CRF层解码得到整个句子的标签序列。实验结果表明,该方法仅使用随机初始化的字符向量作为输入就能快速、有效地识别变异实体,无需复杂的特征工程。同时也在tmVar和MutationFinder两个数据集上都取得了目前最好的结果(F值分别为88.34%和93.57%)。  相似文献   

16.
当前中文命名实体识别方法仅采用字级别或词级别特征方法进行识别,不能兼顾字和词级别的优点,难以获取足够的字形或者词义信息。针对此问题,该文提出一种基于多级别特征感知网络的中文命名实体识别方法。首先提出一种双通道门控卷积神经网络,通过感知字级别特征,在减少了未登录词的同时,也表示了字的字形信息。同时,为了获取词语的词义信息,该文在词级别的特征中嵌入对应位置信息。为了赋予实体更多的权重,该文利用自注意力机制感知带有位置信息的词级别特征。进一步,将上述得到的字级别和词级别信息融合,全面表示句子的语义信息。由于采用字词结合的方法容易产生冗余信息,该文设计一种门控机制的Highway网络,来过滤冗余信息,减少冗余信息对命名实体识别的影响,再结合条件随机场学习到句子中的约束条件实现中文命名实体的识别。实验结果表明,该文所提出的方法总体上优于目前主流的中文命名实体识别方法。  相似文献   

17.
药用植物文本的命名实体识别对中医药领域的信息抽取和知识图谱构建起着重要作用。针对药用植物属性文本存在长序列语义稀疏的问题,提出一种基于注意力机制的双向长短时记忆网络(BiLSTM)和条件随机场(CRF)模型相结合的疾病实体识别方法(BiLSTM+ATT-CRF,BAC)。首先对药用植物属性文本进行预处理和半自动化标注构建数据集,并进行预训练得到低维词向量;然后将这些低维词向量输入BiLSTM网络中,得到双向语义依赖的特征向量;Attention层把注意力集中到与当前输出特征高度相关的信息上;最后通过条件随机场(CRF)算法获取最优的标签序列并解码输出。实验结果表明,BAC方法针对药用植物属性文本的长序列语义稀疏问题,疾病命名实体识别效果较传统方法更优。利用BAC方法训练好的模型从1680条文本句子中识别疾病命名实体,共抽取出1422个疾病实体。与药用植物名称进行匹配,共抽取出4316个药用植物治疗疾病的三元组数据。  相似文献   

18.
为满足农业命名实体领域中多样而精确的需求,本文采用基于条件随机场的命名实体识别,将农业命名实体分为病虫害、作物、化肥及农药4种命名实体,并用自定义标注集对其进行标注,以ICTCLAS分词系统来对收集到的语料进行分词,通过添加多种不同的特征以提高识别率。最终训练得到的模型对各命名实体识别的准确率达到了93%以上,召回率达到了84%以上,证明对农业命名实体细致划分为多个实体是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号