首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了臭氧催化氧化降解煤化工高盐废水有机物的机理。实验采集了国内典型煤化工企业高盐废水,明确了水中盐离子的组成及含量;制备高盐性臭氧催化剂,研究了不同活性组分对臭氧催化氧化效率的影响,确定了最佳的臭氧催化剂;对臭氧催化剂开展表征分析,明确催化剂表观形貌、元素组成及负载情况;最后采用甲酸模拟水样,研究臭氧催化氧化作用方式、臭氧衰减率变化、羟基自由基(·OH)变化、H2O2变化及超氧自由基(·O2-)变化,明确臭氧催化氧化作用机理及反应历程。结果表明:煤化工高盐废水阳离子主要为钠离子,其次是钾离子、钙离子、镁离子;阴离子主要为氯离子、硫酸根,其次是硝酸根离子;通过研究不同活性组分对臭氧催化氧化效率确定最佳催化剂为SiO2/Al2O3-Fe2O3。对催化剂开展表征分析发现:催化剂载体为硅铝复合氧化物,铁作为活性组分均匀负载于载体上。臭氧催化氧化降解机理研究发现:臭氧催化氧化过程遵从羟基自由基作用机理,O3通过衰减产生羟基自由基,而催化剂的加入促进了·OH生成;反应过程中产生的H2O2量与·?OH有关,·?OH越多,H2O2产生量越多,但·O2-的产生与·OH没关系。  相似文献   

2.
为解决臭氧氧化处理煤化工废水现阶段所存在的臭氧利用率不高,并进一步处理煤化工废水中的难降解有机物.论文采用臭氧催化氧化法对煤化工调节池废水进行深度处理,研究了温度、pH、臭氧投加量、反应时间、催化剂投加量等因素对COD和色度去除效率的影响.通过单因素实验分析,得到其最佳工况条件为臭氧投加量为4g/h,废水pH=9,水温...  相似文献   

3.
通过自制MnO2-CeO2/Al2O3催化剂,采用催化臭氧氧化工艺对煤化工废水进行深度处理,考察了反应时间、臭氧通入量、催化剂装填量、pH值、COD浓度等因素对COD去除率影响。实验结果表明,对于COD质量浓度为1 550 mg/L废水,最适宜的工况条件为臭氧通入量为4 g/h, 1 000 mL废水中填充500 g催化剂,废水pH值>9,反应时间1 h。经检测,B/C达到0.63,处理后的废水具有良好的可生化性,表明该工艺对煤化工废水具有良好的处理效果。经多次重复实验,COD去除率较为稳定,催化剂性能良好,可作为将来工业制备催化剂的参考。  相似文献   

4.
催化臭氧氧化法降解土霉素废水   总被引:1,自引:2,他引:1  
采用Mn^2 -MnO2催化臭氧氧化降解土霉素废水,考察了pH值、臭氧流量、催化剂配比及投加量、自由基抑制剂等因素对降解效果的影响。结果表明:Mn^2 -MnO2催化剂的使用,可使废水CODCr去除率由单独臭氧氧化的35.3%提高到70.8%,同时还证实了催化臭氧氧化降解土霉素废水主要是自由基的氧化作用。  相似文献   

5.
颗粒活性炭催化臭氧氧化法降解焦化废水有机物   总被引:3,自引:0,他引:3  
以COD和挥发酚作为焦化废水中有机物的指标,探讨了颗粒活性炭催化臭氧氧化法对有机物的处理效果、活性炭的催化效果和最佳投加量。结果表明添加颗粒活性炭能有效提高臭氧对焦化废水中的COD和挥发酚的降解效果,颗粒活性炭投加量为20g/L时,COD的去除率提高了20%。通过颗粒活性炭吸附试验可以明确颗粒活性炭在臭氧,活性炭系统中的主要作用是催化作用,活性炭的吸附作用只是催化反应的中间过程,基本不会影响有机物的最终去除率。活性炭投加量(10—25g/L)越大,其催化效果越好,但考虑到费用与效益,以20g/L为宜。活性炭作为催化剂重复使用四次后,其催化效果未明显下降。  相似文献   

6.
采用单独臭氧和3种不同催化剂对焦化废水进行臭氧催化氧化试验,试验结果表明,催化剂可以大大提高臭氧氧化效率,缩短氧化时间。臭氧催化氧化对UV_(254)和COD去除率最高分别可达71.03%和50.36%,出水COD浓度满足GB 16171—2012《炼焦化学工业污染物排放标准》,废水可生化性提高,有利于进一步深度处理。  相似文献   

7.
王吉坤  李阳  陈贵锋  刘敏  李文博  何毅聪 《化工进展》2021,40(10):5837-5844
研究了臭氧催化氧化降解煤化工生化进水有机物的工艺条件及机理。本文以新疆某煤化工生化进水为研究对象,确定废水中难降解有机物的种类及含量,开展臭氧催化氧化试验,探讨工艺条件对化学需氧量(COD)的去除率,最后以溶解性有机物(DOM)为对象,解析废水难降解有机物的降解规律。结果表明:废水中主要为苯酚及腐殖酸;最佳工艺参数为催化剂投加量1.2L/L、臭氧浓度500mg/L、臭氧通气量2.5m3/h;反应后各组分的UV254均下降,去除率从高到低为疏水性中性物质(HoN)>亲水性碱性物质(HiB)>疏水性碱性物质(HoB)>亲水性酸性物质(HiA)>疏水性酸性物质(HoA)>亲水性中性物质(HiN),富里酸类、腐殖酸类、蛋白质类及溶解性生物代谢产物等荧光强度均降低。  相似文献   

8.
以钢渣、粉煤灰、黏土、剩余活性污泥和过渡金属盐类为原料,利用固相混合法制备得到陶粒催化剂,并对焦化废水生化尾水进行臭氧催化深度处理研究。以COD去除率为评价指标,考察了催化剂活性组分种类与质量分数、催化剂质量浓度、臭氧投加量、焙烧温度及废水初始p H等工艺条件对COD去除率的影响。结果表明,Mn-Ti O2双活性组分质量分数为8%、焙烧温度为1 110℃、废水初始p H为7. 12、臭氧投加量为5. 81 mg/min、催化剂质量浓度为20 g/L时,陶粒催化剂对焦化废水的处理效果最佳。废水的COD从100. 08 mg/L降至44. 12 mg/L,去除率高达55. 92%。出水水质满足新修订的焦化废水排放标准。催化剂重复使用10次,活性无明显衰减,COD去除率均保持在50%以上。  相似文献   

9.
催化臭氧氧化技术是一种重要的有机废水处理方法,具有氧化能力强,操作简便,无二次污染等特点。综述了不同催化剂在催化臭氧氧化降解有机废水过程中性能,并对其机理进行分析,讨论了不同工艺条件对反应结果的影响,并在现有基础上对催化臭氧氧化催化剂的研究方向进行推测,指出具有高热稳定性和化学稳定性的钙钛矿催化剂应是未来重要的研究方向之一。  相似文献   

10.
臭氧氧化法处理煤化工难降解废水实验研究   总被引:1,自引:0,他引:1  
高珊  周集体  孙丽颖  石英军 《辽宁化工》2013,(10):1179-1180,1184
某煤化工废水经生物处理后COD仍然在500mg/L以上,色度较大,为保证后处理排水达标,对该废水进行臭氧氧化处理。经实验,处理1L废水时的最佳反应条件为进气流量0.6m3/h,产臭氧量7.73mg/min,气循环1.0m3/h,反应时间30min。处理后COD去除率为30%,废水B/C达到0.3,色度达80%。  相似文献   

11.
白小霞  杨庆  丁昀  魏巍  丁洁  钟莺莺 《化工进展》2016,35(1):263-268
介绍了催化臭氧氧化的主要类别,分述了均相与非均相催化臭氧氧化在难降解石化废水方面的已有应用和催化机理,探讨了非均相催化臭氧氧化中活性炭的主要作用;简述了pH值、温度、臭氧和催化剂投加方式与投加量、催化剂体系等因素在非均相催化臭氧氧化中的影响规律。在已有研究的基础上,提出了将催化臭氧氧化与生化处理相结合的建议并佐证了其可行性;预测了催化臭氧氧化未来的研究方向;针对活性炭在催化臭氧氧化处理难降解石化废水中存在的问题,提出应加强对活性炭的改性研究,同时对某些工艺进行深入研究,全面掌握可能存在的问题,为完善催化臭氧氧化的机理作出努力。  相似文献   

12.
为处理长链二元酸生物发酵工艺产生的高硫酸盐有机废水,筛选分离出一株具有优异耐盐性能的菌株GXNYJ-12,其可有效处理COD质量浓度为6 512 mg/L、硫酸盐质量浓度为20 200 mg/L、全盐量质量浓度为31 100 mg/L的长链二元酸工艺废水,经120 h好氧生化,COD去除率高达95%.其生化出水经臭氧催...  相似文献   

13.
高级氧化技术(AOPs)作为具有重要应用前景的废水深度处理技术,逐步成为水处理领域研究的热点,非均相催化臭氧氧化技术凭借无污染、矿化度高、臭氧利用率高等优势备受关注。文章综述了常见的催化O3氧化废水中有机物的反应机理,反应机理可分为自由基机理及非自由基机理。结合前期的研究成果可发现:催化剂表面的晶格缺陷、表面氧含量及表面氧性质对催化性能具有重要影响,且不同价态金属转换过程中会伴随晶格氧与晶格缺陷的转换,晶格氧与氧空位的生产及复原不仅影响催化氧化的效率还与催化剂的寿命有直接关系。讨论了非均相臭氧催化氧化反应催化剂的发展趋势,对今后本领域的研究提出建议,为进一步改善催化剂的性能及工程实践应用提供理论参考。  相似文献   

14.
15.
过氧化氢异丙苯(CHP)作为一种典型的有机过氧化物,其废水会抑制生化系统活性,在实际处理中存在技术困难。本研究通过水热-浸渍法在球形分子筛表面负载Fe/HKUST-1,将其作为前驱体在350°C下碳化制备Fe/HKUST-1衍生碳@分子筛催化剂(FeCu-C@MS)。利用SEM、EDS、XRD等技术对催化剂进行表征,考察臭氧浓度、催化剂投加量、pH、初始CHP浓度等对FeCu-C@MS/O3体系降解CHP的影响。结果表明:FeCu-C@MS/O3体系在臭氧浓度为20 mg/L、催化剂投加量为50 g/L、pH为7、CHP初始浓度为12 mg/L的条件下,经过120 min反应CHP去除率可以达到65.47%,比O3体系提高35.80%;经过5次循环使用后,CHP去除率仍可达到55.19%,表明FeCu-C@MS可以高效催化臭氧氧化降解过氧化氢异丙苯,且具有较好的稳定性和可重复利用性。  相似文献   

16.
邓传杰 《山西化工》2014,34(5):76-78
臭氧氧化作为一种有效的深度处理技术,对有机废水具有良好的降解功效。介绍了臭氧的性质及氧化机理,分析了臭氧氧化法在处理纺织印染废水、造纸废水、垃圾渗滤液、炼油废水、焦化废水等难降解有机废水中的应用,指出了臭氧氧化存在的问题,并提出建议。  相似文献   

17.
为解决煤化工高盐废水COD去除率低带来的蒸发结晶杂盐率高,危废处理费用高的难题,考察了臭氧催化氧化-活性炭吸附耦合工艺对煤化工高盐废水COD的去除效果。对二次反渗透浓盐水开展臭氧催化氧化试验,对其出水开展活性炭吸附试验,最后在最佳工艺下开展臭氧催化氧化-活性炭吸附耦合工艺连续试验。结果表明:臭氧催化氧化试验最佳参数:催化剂投加量700 mg/L,臭氧气体浓度300 mg/L,臭氧通气量1.5 L/min;活性炭吸附试验最佳参数:活性炭投加量80 g/L,吸附时间60 min;在最佳工艺参数下开展耦合工艺100 h连续试验,结果表明:COD去除率稳定在78%~80%,出水COD的质量浓度稳定在80~90 mg/L,臭氧催化氧化-活性炭吸附耦合工艺对高盐废水COD去除效果明显。  相似文献   

18.
催化臭氧氧化工艺深度处理印染废水   总被引:4,自引:0,他引:4  
采用自制MnO2基催化剂进行催化臭氧氧化处理印染废水的试验。考察了O3输出量、催化剂用量、废水pH、反应时间等对废水处理效果的影响。通过单因素实验确定了最佳的反应条件为:O3输出体积分数为40%,催化剂的投加质量为4.9 g,废水pH=6.4,反应时间为50 min;使用MnO2基催化剂后,COD的去除率能从单独臭氧氧化时的40.17%提高到74.87%,各项指标基本达到了印染废水环保排放和回用的要求。  相似文献   

19.
对"混凝+活性炭吸附"联用工艺处理煤化工高含盐废水进行了试验研究,考察了相关工艺参数对COD去除效果的影响;选用聚合硫酸铁(PFS)为混凝剂,当PFS投加量为0.5 g/L、聚丙烯酰胺助凝剂投加量10 mg/L、废水初始p H为8.69时,COD去除率达到29.0%;选用柱状活性炭为吸附剂,当活性炭投加量60 g/L、废水初始p H为7.40、吸附时间120 min时,COD去除率为70.1%,出水COD小于80 mg/L;结果表明,该工艺可以有效去除煤化工高含盐废水COD。  相似文献   

20.
苯、甲苯、乙苯和二甲苯(BTEX)是煤化工废水中典型的难降解有机污染物,通常情况下BTEX较难通过传统的化学氧化技术去除。笔者自主制备了多孔臭氧催化剂,并对催化剂进行表征分析;考察了催化臭氧化降解BTEX的最佳反应条件,并对不同反应体系中自由基的激发情况进行比对;在此基础上探究催化臭氧化对BTEX的去除机理,为BTEX在实际处理过程中的技术应用提供理论基础。XRD分析结果表明,多孔臭氧催化剂含有氧化铝、氧化硅等,且含有沸石结构的化合物。XPS分析结果表明,所合成的催化剂含Si、O、Cu、Fe、Mn、Al等元素。SEM结果表明,催化剂由许多不规则的细小块状粉末构成,且表面非常蓬松,堆叠成多级结构,使催化剂呈多孔性。比表面积分析表明,催化剂的比表面积为20.8 m^2/g,孔隙直径主要集中在3.8 nm。使用该催化剂对BTEX进行催化臭氧化试验,结果表明,反应温度为30℃、溶液pH=8、臭氧投加量为3.5 mg/L、催化剂投加量为5 g/L时,BTEX的降解效果最佳。在该反应体系中有机物去除率为99.1%,其中苯、甲苯、乙苯、二甲苯的去除率分别为95.6%、98.2%、100%、100%。ESR分析结果表明,催化臭氧化反应体系中羟基自由基和超氧自由基的激发强度明显高于臭氧氧化反应体系,这是因为本文制备的催化剂含有Al、Fe、Mn、Cu氧化物,使催化反应过程中负载的金属氧化物价态间相互变化,转移的电子可促进臭氧分子分解,从而产生更多的自由基。催化臭氧化技术是以羟基自由基为主导,超氧自由基、催化剂吸附为辅助,协同实现煤化工废水中典型有机污染物BTEX的高效去除。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号