首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The star-shaped polyester polyols based on initiators (trimethylolpropane or pentaerythritol) and ɛ-caprolactone were prepared by polycondensation reaction. The degradable polyurethane (PU) films were prepared by mixing star-shaped polyester polyols and crosslinker agent (hexamethylene diisocyanate trimer). The hydrolytic degradation and water absorption experiments demonstrated that the PU films could erode in artificial sea water, which were controlled by varying the ratios of ɛ-caprolactone/trimethylolpropane and the arm number of star-shaped polyester polyols. The mechanical properties of PU films and coatings increased with decreasing the ratios of ɛ-caprolactone/trimethylolpropane and increasing the arm number of star-shaped polyester polyols. The surfaces of PU films and coatings kept eroding, which were revealed by scanning electron microscopy. The copper ion release rates from PU coatings reached steady state at about 31 days. The marine field tests of PU coatings demonstrated that the degradable PU coatings based on star-shaped polyester polyols were effective coatings for marine antifouling.  相似文献   

2.
In this contribution, a series of environmentally friendly thermoplastic poly(propylene carbonate) polyurethane (PPCU) were prepared by two‐step condensation polymerization and used to fabricate antifouling coatings. The poly(propylene carbonate) (PPC) segments served as degradable moieties. Quartz crystal microbalance with dissipation (QCM‐D) measurements revealed that the polyurethane could degrade in the presence of enzyme and the degradation rate increases with the decrease of the molecular weight of the polyurethane. Investigation on the hydrolytic degradation behavior and the release rate test of the antifoulants in artificial seawater also demonstrated that the hydrolysis rate and the release rate increased as the molecular weight decreased, which makes the coating controllable at the hydrolysis rate range of 0.012–0.051 g/(m2d). Marine field tests and algae settlement assay tests revealed that the polyurethane coating possessed antibiofouling ability due to its self‐renewal property and the release of antifoulants. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43667.  相似文献   

3.
Chemical degradation of used PU was intentionally made by the addition of flame retardants such as tris(2-chloropropyl)phosphate (TCPP), triethyl phosphate (TEP) and trimethyl phosphonate (TMP). Final product obtained after the degradation reaction was named as DEP. The structure of degraded products (DEP) was analyzed by FT-IR and 31P NMR and it turned out to be phosphorous containing oligourethanes. Rigid polyurethane foam was produced using the degraded products (DEP) as flame retardants. The flammability and thermal stability of recycled rigid polyurethane was investigated. The mechanical properties such as compressive strength and tensile strength of recycled polyurethane were also studied. The recycled polyurethane shows reduced flammability and higher thermal stability over virgin polyurethane. Mechanical strength of recycled polyurethane also shows as high as that of virgin polyurethane. In order to evaluate flame retardant properties of the recycled polyurethane foams with various amounts of DEP, heat release rate (HRR) of the foam was measured by cone calorimeter. Scanning electron micrograph of recycled PU shows uniform cell morphology as virgin-PU.  相似文献   

4.
In this article, core‐shell structure nanofibers were fabricated by coaxial electrospinning with biodegradable copolymer Poly(L ‐Lactic‐ε‐Caprolactone) [P(LLA‐CL) 50 : 50] as shell and bovine serum albumin (BSA) as core. Morphology and microstructure of the nanofibers were characterized by scanning electron microscopy and transmission electron microscopy. The mechanical properties were investigated by stress‐strain tests. In vitro degradation rates of the nanofibrous membranes were determined by measuring their weight loss when immersed in phosphate‐buffered saline (pH 7.4) for a maximum of 14 days. Release behavior of BSA was measured by an ultraviolet‐visible spectroscopy, and the results demonstrated that BSA could release from P(LLA‐CL) nanofibers in a steady manner. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
The uses of polyurethane foams have been increased too much as new abilities are known for these polymers. This increments lead to an ecological problem. They have low density, occupying large spaces and not easy degradable. This causes environmental pollution that is a disadvantage of artificial materials. In this study, waste flexible polyurethane foams based on MDI with a trans-esterification process were converted to new material containing OH functional groups in “split-phase glycolysis” (SPG) condition. In this process, products are separated in two phases that could be reused in the production process of new PUFs. This process is one of the best solutions for ecological problem and applicable for every PU structure polymer with its proper variations. This process has the capability to produce flexible and rigid polyols which can be used to make PU foams with high recyclate content. The similarity of upper and lower phases to the virgin one has been characterized, using FTIR, GPC, and other instrumental methods. Both phases of recyclate were introduced in new PUF formulation, comparing the results with original foam.  相似文献   

6.
The effects of the chemical structure and addition of cross-linking agent and polyvinyl chloride (PVC) on the tensile strength of polyurethanes (PU) binder have been investigated. An expectation of the lifetime of PU binder as magnetic recording media has been performed based on the tensile strength change in different environmental conditions.

It was found that a small number of ester bonds which are directly responsible for the polymer degradation and suitable storage temperature are required to extend the lifetime of the recording media. In addition, the presence of PVC and polyisocyanate (CL) as cross linking agent extends the lifetime of PU binder. For example, poly(hexamethylene carbonate) diol-based polyurethane PU(PCD) in a mixture system such as PU(PCD)/CL/PVD can be expected to have a tensile half life of about 200 years at 20°C.  相似文献   


7.
This paper reports the characteristics and performance evaluation of a pressed plastic bonded explosive (PBX) composition based on hexanitrohexaazaisowurtzitane (HNIW, CL‐20) and polyurethane (PU) in comparison with PU‐coated cyclotetramethylene tetranitramine (HMX). PU‐coated compositions were prepared by slurry method. The processed CL‐20‐based composition exhibited a relatively higher sensitivity compared to that of the HMX composition. The measured velocity of detonation (VOD) of the CL‐20‐based composition was found to be higher than predicted. A theoretical approach was applied to assess the penetration capability of the CL‐20 formulation. Shaped charges of 32 mm caliber were prepared and penetration experiments were carried out at 37 mm standoff distance on mild steel blocks. The results established high penetration capability of CL‐20‐based formulation. An attempt was made to explain the trends obtained.  相似文献   

8.
Phosphorus‐containing epoxides were used to generate several oligomeric polyether diols, which were in turn utilized in the preparation of model polyurethane (PU) samples, either as comonomers in the polymerization ( Prep samples) or solvent blended into a priori prepared PU ( Blend samples). The resultant samples were evaluated for heat release reduction potential using microcombustion calorimetry. Several variables were investigated in the oligomerization of the original epoxides, such as presence of initiator, epoxide comonomer, and solvent. The oligomer mixtures were thoroughly characterized, using NMR, mass spectrometry (MS), elemental analysis, and viscosity measurements. The final PU Prep samples were carefully analyzed to demonstrate and evaluate the degree of chemical incorporation of the polyether diols into the PU main chain. Results from the heat release studies demonstrated that incorporation of the phosphorus‐containing diol did lower flammability, but the structure of the original epoxide, as well as the oligoimerization conditions, had an effect on heat release reduction. The results are complex and require further study, but the phosphonate‐based materials showed greater heat release reduction potential, both in the form of Prep and Blend samples, especially in one case of a Blend sample, where a notable amount of intumescent char was formed.  相似文献   

9.
Pure polyurethane (PU) and its composites with zeolite 4A prepared through the in situ reaction were used as coating materials for urea. On the basis of analyzing their morphologies and structures, the effect of zeolite 4A content on release property of coated urea was investigated. SEM images showed the formation of the good interface between microsized zeolite 4A and polyurethane. When 2% of zeolite 4A was added into PU, the N release duration of coated urea reached 70 d, implying that PU/zeolite 4A composite can be used as an alternate strategy to improve the N use efficiency in controlled release fertilizer.  相似文献   

10.
The effect of the compatibilizers, P(LLA‐co‐?CL) and P(LLA‐b‐?CL), on the morphology and hydrolysis of the blend of poly(?‐caprolactone) (PCL) and poly(L ‐lactide) (PLLA) was investigated. An addition of P(LLA‐co‐?CL) or P(LLA‐b‐?CL) into the blend could enhance the compatibility between the dispersed PCL domains and the PLLA matrix. The size of the PCL domains in the PLLA/PCL (70/30) blend containing P(LLA‐co‐?CL) reduced more significantly with an increase in the content of the compatibilizer than that in the blend containing P(LLA‐b‐?CL). The molecular weight of the PLLA/PCL blend films compatibilized with P(LLA‐co‐?CL) or P(LLA‐b‐?CL) decreased during the hydrolysis and the decrease of the molecular weight of the blend films compatibilized with P(LLA‐co‐?CL) was much more significant than that of the blend films compatibilized with P(LLA‐b‐?CL). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1892–1898, 2002  相似文献   

11.
Siloxane–polyurethane paints were formulated and characterized for coating properties and performance as fouling-release (FR) marine coatings. Paints were formulated at 20 and 30 pigment volume concentrations with titanium dioxide, and aminopropyl-terminated poly(dimethylsiloxane) (APT-PDMS) loadings were varied from 0 to 30% based on binder mass. The coatings were characterized for water contact angle, surface energy (SE), gloss, and pseudobarnacle (PB) adhesion. The assessment of the FR performance compared with polyurethane (PU) and silicone standards through the use of laboratory biological assays was also performed. Biofilm retention and adhesion were conducted with the marine bacterium Cellulophaga lytica, and the microalgae diatom Navicula incerta. Live adult barnacle reattachment using Amphibalanus amphitrite was also performed. The pigmented coatings were found to have properties and FR performance similar to those prepared without pigment. However, a higher loading of PDMS was required, in some cases, to obtain the same properties as coatings prepared without pigment. These coatings rely on a self-stratification mechanism to bring the PDMS to the coating surface. The slight reduction in water contact angle (WCA) and increase in pseudobarnacle release force with pigmentation suggests that pigmentation slowed or interfered with the self-stratification mechanism. However, increasing the PDMS loading is an apparent method for overcoming this issue, allowing for coatings having similar properties as those of clear coatings and FR performance similar to those of silicone standard coatings.  相似文献   

12.
Segmented polyurethane (PU) has proven to be the best biomaterial for artificial heart valves, but the calcification of polyurethane surfaces causes serious problems in long‐term implants. This work was undertaken to evaluate the effects of polydimethylsiloxane (PDMS) grafting on the calcification, biocompatibility, and blood compatibility of polyurethane. A grafted polyurethane film was compared with virgin polyurethane surfaces. Physical properties of the samples were examined using different techniques. The hydrophobicity of the polyurethane films increased as a result of silicone modification. The effects of surface modification of polyurethane films on their calcification and fibroblast cell (L 929) and platelet behavior were evaluated in vitro. Fourier transform infrared spectroscopy indicated the direct involvement of the polyether soft segments of the polymer in the calcification process. Scanning electron microscopy of films indicated that grafting of silicone rubber to the surface of polyurethane successfully prevented the calcification process. The morphology of fibroblast cells that adhered to the PU films and modified films was similar to that of controls and showed the same proliferation. On the other hand, grafting PDMS onto PU did not affect the amount of platelets that adhered to the polyurethane surfaces. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 758–766, 2005  相似文献   

13.
Poly(L ‐lactide‐co‐ε‐caprolactone) [P(LLA‐CL)], which is used in biodegradable biomedical materials such as drug‐delivery systems, surgical sutures, orthopedics, and scaffolds for tissue engineering, has been reported to crystallize upon storage in a dry state even at room temperature; this results in rapid changes in the mechanical properties. In biomedical applications, P(LLA‐CL) is used in the presence of water. This study investigated the effects of water on the crystallization of P(LLA‐CL) at 37°C in phosphate buffered solution, which was anticipated to alter its mechanical properties and hydrolytic degradation behavior. Surprisingly, the crystallinity of P(LLA‐CL) in the presence of water rapidly increased in 6–12 h and then slowly increased up to 120 h. The period of time for the initial rapid crystallization increase in the presence of water was much shorter than that in the absence of water. The obtained information would be useful for the selection, preparation, and use of P(LLA‐CL) in various biomedical applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
A novel bio-based P-N containing intumescent flame retardant melamine starch phytate (PSTM) was prepared via the reaction of phytic acid starch ester with melamine and characterized by Fourier transform infrared, scanning electron microscopy and thermogravimetric analysis (TGA). The effects of PSTM on thermal properties and flammability of rigid polyurethane (PU) foams were analyzed by TGA, limit oxygen index (LOI), vertical burning tests (UL-94) and cone calorimeter measurement. The TGA results demonstrated that the thermal stabilities of PU/PSTM foam at high temperature was enhanced with the increasing additive amount of PSTM. The results showed that PU foam with 30 php PSTM (PU/PSTM-30%) observed an LOI value of 25.9 and a UL-94 rating of V-0. Cone calorimetry data showed that peak heat release rate, total heat release and smoke production rate of PU/PSTM-30% were distinctly lower than that of pure PU. Further experimental results demonstrated that PSTM promotes well charring of PU which could protect the foam from combustion. This work developed a novel bio-based intumescent flame retardant by suing phytic acid and starch as the acid source and carbon source, respectively, which is of great significance to the preparation of environmental-friendly flame retardants.  相似文献   

15.
Macroscopic thermal and mechanical properties of complex aliphatic polycarbonate‐based polyurethane (PU) films containing degradable ester units in PU backbone were studied by a combination of several experimental techniques. Differential scanning calorimetry (DSC) revealed that the synthesized oligomeric diol (DL‐L) contributes (in addition to polycarbonate diol) to the formation of soft‐segment domains, while the hard‐segment domains are formed from 1,6‐diisocyanatohexane (HDI) and butane‐1,4‐diol (BD). Three main phase transitions were detected by DSC and by dynamic mechanical thermal analysis. Thermogravimetric analysis (TGA) of two‐component PUs showed that the PU made from DL‐L and HDI is the least thermostable product, while the PU made from polycarbonate diol and HDI is the most stable one. The differences in the thermal stability of different four‐component PUs are not important. Tensile properties very sensitively reflect the changes in composition and in microstructure of PU samples; the best tensile properties exhibits the degradable sample containing the equimolar ratio of hydroxyl groups of macrodiol, oligomeric diol DL‐L and butane‐1,4‐diol. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41872.  相似文献   

16.
The concept of tethering quaternary ammonium salts (QASs) to a crosslinked polysiloxane matrix to produce a hybrid antifouling/fouling-release coating was investigated. A statistical experimental design was used to determine the effect of QAS concentration on biocidal activity toward a marine bacterium, Cellulophaga lytica (C. lytica). In addition to measuring biocidal activity, coating film quality as well as stability upon water immersion were evaluated. The results of the study showed that biocidal activity was strongly dependent on QAS concentration. For addition-curable coatings, the presence of 4 wt% QAS moieties resulted in approximately 50% reduction in C. lytica biofilm retention without any leachate toxicity. Attempts to increase the level of QAS moieties to increase biocidal activity resulted in coating delamination from the substrate and unacceptable film quality upon artificial seawater immersion due to excessive swelling. As a result, a moisture-curable system based on tethered QASs was investigated since moisture curing allows for higher crosslink densities to be achieved which would be expected to minimize swelling upon artificial seawater immersion. The moisture-curable coating developed showed enhanced stability upon artificial seawater immersion, greater than 80% reduction in C. lytica biofilm retention, and greater than 90% reduction in biofilm growth for the marine algae, Navicula incerta. Presented at 2007 FutureCoat! Conference, sponsored by Federation of Societies for Coatings Technology, October 3–5, 2007, in Toronto, Ont., Canada.  相似文献   

17.
采用二乙醇胺为降解剂对废旧聚氨酯(PU)硬泡进行降解处理,制备了降解PU/聚丙烯(PP)共混材料;研究了不同降解程度的PU硬泡对PU/PP/PP-g-MA共混材料性能的影响。结果表明:随着降解时间的增加,PU硬泡的凝胶的质量分数由91.4%下降到3.6%,降解产物的玻璃化转变温度由75℃下降到36℃;FTIR证明了降解产生了带有氨基和羟基基团的PU,这些基团成为反应增容的活性点;PU/PP/PP-g-MA复合材料的断裂伸长率由100%上升到1800%,SEM表明复合材料具有有良好的均匀性和相互作用。  相似文献   

18.
Many coating properties such as mechanical, electrical, and ultraviolet (UV) resistance are greatly enhanced by the addition of nanoparticles, which can potentially increase the use of nanocoatings for many outdoor applications. However, because polymers used in all coatings are susceptible to degradation by weathering, nanoparticles in a coating may be brought to the surface and released into the environment during the life cycle of a nanocoating. Therefore, the goal of this study is to investigate the process and mechanism of surface degradation and potential particle release from a commercial nanosilica/polyurethane coating under accelerated UV exposure. Recent research at the National Institute of Standards and Technology (NIST) has shown that the matrix in an epoxy nanocomposite undergoes photodegradation during exposure to UV radiation, resulting in surface accumulation of nanoparticles and subsequent release from the composite. In this study, specimens of a commercial polyurethane (PU) coating, to which a 5 mass% surface-treated silica nanoparticle solution was added, were exposed to well-controlled, accelerated UV environments. The nanocoating surface morphological changes and surface accumulation of nanoparticles as a function of UV exposure were measured, along with chemical change and mass loss using a variety of techniques. Particles from the surface of the coating were collected using a simulated rain process developed at NIST, and the collected runoff specimens were measured using inductively coupled plasma optical emission spectroscopy to determine the amount of silicon released from the nanocoatings. The results demonstrated that the added silica nanoparticle solution decreased the photodegradation rate (i.e., stabilization) of the commercial PU nanocoating. Although the degradation was slower than the previous nanosilica epoxy model system, the degradation of the PU matrix resulted in accumulation of silica nanoparticles on the nanocoating surface and release to the environment by simulated rain. These experimental data are valuable for developing models to predict the long-term release of nanosilica from commercial PU nanocoatings used outdoors and, therefore, are essential for assessing the health and environmental risks during the service life of exterior PU nanocoatings.  相似文献   

19.
Polyurethanes (PUs) are very versatile polymeric materials with a wide range of physical and chemical properties. PUs also have desirable properties, such as high abrasion resistance, tear strength, shock absorption, flexibility, and elasticity. Although they have poor thermal stability, it can be improved by using treated clay.

The objective of the present work is to study the thermal stability of polyurethane, polyurethane/montmorillonite (PU CTAB-mont 3% wt), and polyurethane/montmorillonite containing moca (PU Moca CTAB-mont 3% wt) nanocomposites based on palm oil polyol.

The interest of investigating the synthesis of polyurethane/clay nanocomposites based on palm oil polyol is to explore the use of palm oil polyol to partially replace petrochemical-based polyol.

Polyurethane/clay nanocomposites were prepared by a pre-polymer method and evaluated by Fourier Transform Infrared Spectra (FTIR) to determine micro-domain structures of segmented PU, PU CTAB-mont 3% wt, and PU Moca CTAB-mont 3% wt. The morphology of the nanocomposites was characterized by X-ray diffraction (X-RD), and flame retardant was investigated with thermogravimetric analysis (TGA). The result showed that in comparison with the virgin polyurethane, adding clay and moca demonstrated better thermal stability.  相似文献   

20.
Several new phosphorus‐containing potential flame retardants (FRs) were prepared and evaluated for heat release reduction potential, by incorporation of the molecules into polyurethane samples, generated from methylene diphenyl diisocyanate and 1,3‐propane diol. The potential FRs were all prepared from commercial diisocyanates, with the phosphorus‐containing substructure introduced as a semicarbazone. All of the target structures were diols, to facilitate their incorporation into a polyurethane main chain. The polyurethane samples were prepared via copolymerization, and analysis clearly demonstrated that the potential FRs were chemically incorporated, prior to heat release testing. The heat‐release reduction potential of these substances was evaluated using the microcombustion calorimeter. Results demonstrated that both heat release reduction potential and char formation were structure dependent. Some of the compounds containing an aromatic core had more effect on char formation (higher char yields) and peak heat‐release rate (lowered heat release) than just phosphorus content alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号