首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Computational fluid dynamics is an efficient numerical approach for spray atomization study, but it is chal enging to accurately capture the gas–liquid interface. In this work, an accurate conservative level set method is intro-duced to accurately track the gas–liquid interfaces in liquid atomization. To validate the capability of this method, binary drop collision and drop impacting on liquid film are investigated. The results are in good agreement with experiment observations. In addition, primary atomization (swirling sheet atomization) is studied using this method. To the swirling sheet atomization, it is found that Rayleigh–Taylor instability in the azimuthal direction causes the primary breakup of liquid sheet and complex vortex structures are clustered around the rim of the liq-uid sheet. The effects of central gas velocity and liquid–gas density ratio on atomization are also investigated. This work lays a solid foundation for further studying the mechanism of spray atomization.  相似文献   

2.
The flow focusing nozzle is a new type of nozzle that performs effective atomization of the discrete phase by means of high-speed motion of the continuous phase.The flow pattern and its morphological changes have a significant effect on the atomization, but the influence of different parameters on the morphological change of the flow pattern remains unclear.The flow focusing pattern and morphological changes in the two-phase flow inside the nozzle were simulated numerically, based on the volume of fluid method.The results demonstrate that the ratio of the nozzle-to-capillary distance and capillary diameter, the gas–liquid velocity ratio, and capillary diameter have significant effects on the flow pattern.When the ratio of the nozzle-to-capillary distance H and capillary diameter D increases, or the capillary diameter D increases, the flow pattern tends to transform into a laminar form; however, when the gas–liquid velocity ratio V increases, the flow pattern tends to transform into a turbulence form.Furthermore, we define the cone-shaped expansion rate, cone-shaped focusing rate,and cone angle in order to study the morphological changes in the cone shape inside the nozzle.The results indicate that the morphological change of the cone shape and flow pattern transformation is interrelated.When the cone shape tends to be unstable, the flow pattern changes towards flow blurring, whereas, a stable cone indicates that the flow tends to exhibit a droplet pattern.  相似文献   

3.
Rotating packed bed has high efficiency of gas–liquid mass transfer. So it is significant to investigate fluid motion in rotating packed bed. Numerical simulations of the effects of packing feature size on liquid flow characteristics in a rotating packed bed are reported in this paper. The particle image velocimetry is compared with the numerical simulations to validate the turbulent model. Results show that the liquid exists in the packing zone in the form of droplet and liquid line, and the cavity is droplet. When the radial thickness of the packing is less than 0.101 m, liquid line and droplets appear in the cavity. When rotational speed and radial thickness of the packing increase, the average diameter of the droplets becomes smaller, and the droplet size distribution becomes uniform. As the initial velocity of the liquid increases, the average droplet diameter increases and the uniformity of particle size distribution become worse. The droplet velocity increases with the radial thickness of the packing increasing, and gradually decreases when it reaches the cavity region. The effect of packing thickness is most substantial through linear fitting. The predicted and simulated values are within ±15%. The cumulative volume distribution curves of the experimental and simulated droplets are consistent with the R-R distribution.  相似文献   

4.
Combustion of heavy fuels is one of the main sources of greenhouse gases, particulate emissions, ashes, NOxand SOx. Gasification is an advanced and environmentally friendly process that generates combustible and clean gas products such as hydrogen. Some entrained flow gasifiers operate with Heavy Fuel Oil(HFO) feedstock. In this application, HFO atomization is very important in determining the performance and efficiency of the gasifiers.The atomization characteristics of HFO(Mazut) discharging from a pressure-swirl atomizer(PSA) are studied for different pressures difference(Δp) and temperatures in the atmospheric ambient. The investigated parameters include atomizer mass flow rate( _m), discharge coefficient(CD), spray cone angle(θ), breakup length(Lb), the unstable wavelength of undulations on the liquid sheet(λs), global and local SMD(sauter mean diameter) and size distribution of droplets. The characteristics of Mazut sheet breakup are deduced from the shadowgraph technique. The experiments on Mazut film breakup were compared with the predictions obtained from the liquid film breakup model. Validity of the theory for predicting maximum unstable wavelength was investigated for HFO(as a highly viscous liquid). A modification on the formulation of maximum unstable wavelength was presented for HFO. SMD decreases by getting far from the atomizer. The measurement for SMD and θ were compared with the available correlations. The comparisons of the available correlations with the measurements of SMD andθ show a good agreement for Ballester and Varde correlations, respectively. The results show that the experimental sizing data could be presented by Rosin-Rammler distributions very well at different pressure difference and temperatures.  相似文献   

5.
The complex liquid film behaviors at flooding in an inclined pipe were investigated with computational fluid dynamic (CFD) approaches. The liquid film behaviors included the dynamic wave characteristics before flooding and the transition of flow pattern when flooding happened. The influences of the surface tension and liquid viscosity were specially analyzed. Comparisons of the calculated velocity at the onset of flooding with the available experimental results showed a good agreement. The calculations verify that the fluctuation frequency and the liquid film thickness are almost unaffected by the superficial gas velocity until the flooding is triggered due to the Kelvin–Helmholtz instability. When flooding triggered at the superficial liquid velocity larger than 0.15 m·s?1, the interfacial wave developed to slug flow, while it developed to entrainment flow when it was smaller than 0.08 m·s?1. The interfacial waves were more easily torn into tiny droplets with smaller surface tension, eventual y evolving into the mist flow. When the liquid viscosity increases, the liquid film has a thicker holdup with more intensive fluctuations, and more likely developed to the slug flow.  相似文献   

6.
液-液同向流中冰浆的形成   总被引:1,自引:0,他引:1       下载免费PDF全文
A new technique for ice slurry production was explored. Multiple small water-drops were formed in another immiscible chilled liquid by a single-nozzled atomizer and frozen in the fluidized bed by direct contact heat transfer. Experiments were conducted to investigate the dynamic behaviors of the ice crystal making system. The results demonstrate that the ice crystals could be produced continuously and stably in the vertical bed with the circulating coolant of initial temperature below -5℃. The size distribution of the ice crystals appears non-uniform, but is more similar and more uniform at lower oil flow rate. The mean ice crystal size rests seriously with the jet velocity and the oil flow rate. It decreases with decreasing the oil flow rate, and reaches the maximum at an intermediate jet velocity at about 16.5 m.s y. The ice crystal size is also closely related to the phenomenon of drop-coalescing, which can be alleviated considerably by reducing the flow rate or lowering the temperature of the carrier oil. However, optimization of liquid-liquid atomization is a more effective approach to produce fine ice crystals of desired size.  相似文献   

7.
A novel reactor that achieves rapid liquid–liquid mixing via free triple-impinging jets(FTIJs) is developed to improve mixing efficiency at unequal flow rates for liquid–liquid reactions. The flow characteristics of FTIJs were investigated using particle image velocimetry(PIV). The instantaneous and mean velocities data at different Reynolds numbers(Re) were analyzed to provide insights into the velocity distributions in FTIJs. The effect of jet spacing on the stagnation points, instantaneous velocity, mean velocity, profiles of the x- and ycomponents of mean velocity, and turbulent kinetic energy(TKE) distributions of FTIJs were investigated at Re = 4100 with a volumetric flow rate ratio of 0.5. The characteristics of the turbulent flows are similar for all jet spacings tested. Two stagnation points are observed, which are independent of jet spacing and are not located in the center of the flow field. However, velocity and TKE distributions are strongly dependent on the jet spacing.Decreasing jet spacing increases the expansion angle and the values of TKE, leading to strong turbulence, improving momentum transfer and mixing efficiency in FTIJs. The present study shows that optimization of the operating parameters is helpful for designing FTIJs.  相似文献   

8.
多管气升式环流反应器的液体循环   总被引:2,自引:0,他引:2       下载免费PDF全文
A multi-tube air-lift loop reactor (MT-ALR) is presented in this paper. Based on the energy conservation, a mathematical model describing the liquid circulation flow rate was developed, which was determined by gas velocity, the cross areas of riser and downcomer, gas hold-up and the local frictional loss coefficient. The experimental data indicate that either increase of gas flow rate or reduction of the downcomer diameter contributes to higher liquid circulation rate. The correlation between total and the local frictional loss coefficients was also established.Effects of gas flowrate in two risers and diameter of downcomer on the liquid circulation rate were examined. The value of total frictional loss coefficient was measured as a function of the cross area of downcomer and independent of the gas flow rate. The calculated results of liquid circulation rates agreed well with the experimental data with an average relative error of 9.6%.  相似文献   

9.
具有冲击平板的雾化喷雾流中汽液流动的模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
A comprehensive three-dimensional model of droplet-gas flow was presented to study the evolution of spray in the effervescent atomization spray with an impinging plate.For gas phase,the N-S equation with the k-ε turbulence model was solved,considering two-way coupling interaction between droplets and gas phase.Dispersed droplet phase is modeled as Lagrangian entities,accounting for the physics of droplet generation from primary and secondary breakup,droplet collision and coalescence,droplet momentum and heat transfer.The mean size and statistical distribution of atomized droplets at various nozzle-to-plate distances were calculated.Some simulation results were compared well with experimental data.The results show that the existence of the impinging plate has a pronounced influence on the droplet mean size,size distribution and the droplet spatial distribution.The air-to-liquid ratio has obvious effects on the droplet size and distribution.  相似文献   

10.
上升管中严重段塞流的流型和压力波动特性   总被引:4,自引:0,他引:4       下载免费PDF全文
During the exploitation of offshore oil and gas, it is easy to form severe slugging which can cause great harm in the riser connecting wellheads and offshore platform preprocessing system. The flow pattern and pressure fluctuation of severe slugging were studied in an experimental simulation system with inner diameter of 0.051 m. It is found that severe slugging can be divided into three severe slugging regimes: regime I at low gas and liquid flow rates with large pressure fluctuation, intermittent flow of liquid and gas in the riser, and apparent cutoff of liquid phase, regime II at high gas flow rate with non-periodic fluctuation and discontinuous liquid outflow and no gas cutoff, regime III at high liquid flow rate with degenerative pressure fluctuation in form of relatively stable bubbly or plug flow. The results indicate that severe slugging still occurs when the declination angle of pipeline is 0˚, and there are mainly two kinds of regimes: regime I and regime II. As the angle increases, the formation ranges of regime I and regime III increase slightly while that of regime II is not affected. With the increase of gas superficial velocity and liquid superficial velocity, the pressure fluctuation at the bottom of riser increases initially and then decreases. The maximum value of pressure fluctuation occurs at the transition boundary of regimes I and II.  相似文献   

11.
液体射流的破裂是雾化的一个重要组成部分,为深入理解该破裂过程,文中使用数码相机对液体射流在同向气流作用下的破裂过程进行了实验研究。通过观察和分析发现,随着Weber数的增大,破裂过程可依次划分成3种模式:轴对称、非轴对称和细丝模式,其中非对称模式下还包含一个特殊的袋状或者膜状破裂子模式,并分别给出了各个模式下破裂长度和未扰动长度对与Weber数、Reynolds数的关联式。  相似文献   

12.
为实现污泥雾化破碎的数值模拟,探究污泥雾化特征和操作参数对污泥雾化效果的影响,在污泥雾化试验平台试验的基础上基于Fluent软件对污泥在气体辅助式雾化器的雾化破碎进行模拟研究,模拟结果确定了污泥的雾化特征和最优操作参数。通过耦合流体体积法(VOF)与离散相模型(DPM),对较大的液体团采用VOF方法直接求解,对小液滴采用双向耦合的离散相模型进行追踪,能最大程度地提高计算的准确性。结果表明,污泥的密度和黏度随着含水率升高逐渐降低,气体速度、气液比和雾化角度是影响污泥雾化破碎的最重要的三个操作参数。在雾化过程中,中心区域的雾滴密度大于边缘区域且有少量大颗粒的聚集。对于含水率为87%、密度为1.065×103 kg/m3的污泥,在风速为180 m/s,气液比为126.3,雾化角度为55°时雾化效果最佳,雾滴颗粒的平均粒径约为0.193 mm,试验结果与模拟结果的颗粒粒径吻合度较好,最大相对误差为5.80%。  相似文献   

13.
14.
兰天  孔令真  陈家庆  王奎升 《化工进展》2020,39(4):1282-1291
基于专门搭建的射流破碎雾化实验平台,利用高速摄像可视化研究低速横流作用下不同气液量纲为1参数对液体射流初次破碎模式特征和射流穿透轨迹特征的影响规律。实验结果表明,低速横流作用下液体射流破碎存在柱状破碎和袋式破碎两种模式,其中柱状破碎又可以分为鼓包破碎和拱形破碎。从实验得到的液气动量通量比q和液体韦伯数Wej射流破碎模式图可以看出,液气动量通量比q和液体韦伯数Wej共同决定低速横流条件下射流破碎模式,不同破碎模式之间存在明显的过渡边界。结合液气动量通量比q、液体韦伯数Wej、液体雷诺数Rej等量纲为1参数,拟合得到了射流穿透轨迹曲线对数形式公式,该公式能够很好地预测低速横流作用下液体射流穿透轨迹,其中液气动量通量比q是影响射流穿透轨迹的主要量纲为1参数。  相似文献   

15.
The goal of this article is to study the effect of atomizer exit area ratio on atomizer performance. The experiments are performed on the round liquid jet breakup of seven coaxial air‐blast atomizers with water–air systems. The breakup morphology of liquid jet is observed first. The membrane‐type breakup can be divided into two subregimes called bag‐type breakup and membrane‐fiber breakup, and a correlation of characteristic length on bag‐type breakup regime is obtained. Then, we analyze the influence of atomizer exit area ratio on the breakup morphology of water‐air jets. To obtain reasonable atomization morphology criterions, the atomizer exit area ratio is used to modify the Weber number and momentum flux ratio per unit volume. This method is found to be able to explain different experimental results in the literature, which is also close to the results of round liquid jet in cross air flow and secondary atomization. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2335–2345, 2014  相似文献   

16.
水力喷射空气旋流器(WSA)是一种新型高效的气液传质反应设备。采用雷诺应力模型和VOF两相流模型较好地模拟了WSA的气相压降特性、液相回流比和射流雾化过程,并讨论分析了雾化过程的机理。模拟和实验研究表明,WSA的气相压降随着进口气速的增加先后出现低压降区、压降突跳区、压降过渡区和高压降区4个特征区域,并给出了不同压降区域之间转折点气速的计算方法。射流在这4个压降区域里,分别表现为稳态射流、变形与袋式破碎、袋式破碎与剪切雾化和剪切雾化与离心分离等流态。射流在压降过渡区与高压降区的转折点左右实现充分雾化并达到最大相间传质面积。研究结果为建立基于WSA压降特性的射流雾化与流场调控方法提供了理论依据。  相似文献   

17.
In this paper, a novel method for preparing metal powder with the aid of electrohydrodynamic (EHD) force is introduced. A pneumatic based atomization apparatus was constructed for this study. Solder melt jet is injected from a 250 μm ID nozzle onto a viscous medium (transformer oil). As a result of jet impingement and penetration into the oil, the melt jet disintegrates into micro-sized droplets and ligaments by a combination of the natural jet breakup phenomenon and EHD atomization. Due to the presence of electrostatic forces, the disintegrated droplets and ligaments repel each other and therefore particle coalescence and agglomeration is minimized in this method. The breakup was captured with a high speed camera. The morphology and structure of the obtained powders were investigated using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD), respectively. Morphology of the particles was controlled by varying the oil temperature and the EHD voltage. Structure investigations show that a decrease in particle size leads to an increase in interior microstrain. Also, interior microstrain increases by decreasing the oil temperature. The main advantage of the developed method is to produce fine powder with controlled characteristics such as size, size distribution, morphology and structure.  相似文献   

18.
19.
The surface tension-driven breakup of viscous jets is observed when the jet's exit velocity is modulated with a nonsinusoidal disturbance. The disturbance is generated by the addition of a sine wave and a harmonic. The merge direction, the merge time of potential satellite droplets, and the breakup length are controlled by the phase angle between the fundamental and harmonic component. The thin filament equation is modified to account for asymmetric disturbances and predicts the shape of the jet at breakup and the breakup time. A model is developed to estimate the merge time and direction of the potential satellite droplet.  相似文献   

20.
The phenomenon of breakup of a jet into drops has been applied mainly to separation technologies in the chemical, pharmaceutical, and metallurgical industries. The paper deals with the experimental analysis directed at the breakup of polymer solutions flowing through an orifice nozzle. The analysis of the breakup and atomization of a liquid jet by a high‐speed gas jet is presented. Additionally, non‐Newtonian effects on the breakup of the liquid jet into drops were studied using the microphotography method. In the experiments, various aqueous solutions of polyacrylamide were used. The polymer solutions studied were power‐law fluids. Analysis of the photographs of the jet breakup showed that the length of the jets depends on the liquid and gas flow rates and on the concentration of the polymer used. High‐molecular‐weight polymers added to a solvent lead to changes in the rheological properties of the liquid and the breakup length of the jet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号