首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
针对某矿3801工作面采空区可能存在的煤自燃问题,采用现场测定与理论分析的方法对工作面采空区自燃"三带"进行了研究.研究结果表明:由支架切顶线到采空区25 m为散热带,由采空区内25~125 m为氧化升温带;向采空区125 m范围以外为窒息带.在此基础上,确定工作面最小安全推进速度为3 m/d,并提出了注氮与封堵相结合...  相似文献   

2.
为了研究高河煤矿3#煤层W1310工作面采空区在Y型通风(柔膜墙沿空留巷支护)、高抽巷情况下采空区遗煤自燃发火规律、"三带"分布范围,对采空区遗煤自燃做出超前预测。通过在工作面布置束管监测系统,抽取采空区气体并用气相色谱仪化验,分析O_2、CO、CO_2、CH_4、C_2H_2、C_2H_4、C_2H_6等气体浓度变化,综合考虑来划分采空区自燃"三带"范围。最终确定"三带"范围,进风侧:散热带:0~45m;氧化升温带:45~135m;窒息带:大于135m。回风侧:散热带:0~20m;氧化升温带:20~43m;窒息带:大于43m。月推进速度大于70. 8m/月。实践表明,与工作面实际情况非常符合,防止了采空区自燃,为W1310工作面防灭火提供了有效的技术指导。  相似文献   

3.
《煤矿安全》2020,(2):169-173
为了研究煤矿开采过程中采空区埋管抽采瓦斯条件下自燃"三带"分布规律,以保德煤矿81307综放工作面采空区为研究背景,采用数值模拟和现场实测相结合的方法对其自燃"三带"进行研究。结果表明:81307综放工作面采空区埋管抽采下一号回风巷侧0~175 m为散热带,175~330 m为氧化带,大于330 m为窒息带;运输巷侧0~110 m为散热带,110~265 m为氧化带,大于265 m为窒息带。  相似文献   

4.
为了掌握辛置煤矿10-428B综放工作面自然发火的实际情况,利用气象色谱仪对采空区气体进行分析,确定辛置煤矿10号煤样标志性气体;通过束管检测获得采空区氧气浓度沿工作面推进方向的分布规律,确定采空区自燃“三带”分布:0~28 m为散热带,28~52 m为氧化带,大于52 m为窒息带,并提出采空区防灭火技术措施。  相似文献   

5.
孙海峰 《煤》2020,29(2):44-46
为搞清辛置煤矿2-208工作面采空区自燃“三带”的分布范围,通过在工作面的进、回风巷预埋两组束管,进行现场监测采空区氧浓度场的分布规律,并结合计算机数值模拟,分析得出辛置矿2-208工作面采空区“三带”分布规律:0~28 m为散热带,28~52 m为氧化带,距工作面大于52 m为窒息带。由此提出了采空区防灭火技术措施。  相似文献   

6.
赵玉玲 《采矿技术》2021,21(1):104-106
为掌握辛置煤矿2-208工作面采空区自燃三带的分布规律,在工作面建立束管监测系统,对采空区内可燃气体进行了监测。基于监测结果,得出采空区进风巷侧、中部、回风巷侧的散热带、氧化带、窒息带的范围,通过对监测数据用软件处理,得出采空区自燃危险区域主要为采空区回风侧16 m~59 m的范围,中部20 m~51 m的范围。基于采空区自燃危险区域的分析结果,确定对采空区采用黄泥灌浆+喷洒阻化剂+自燃危险区灌注高效阻化泡沫相结合的防灭火措施,保障采空区的安全。  相似文献   

7.
汪瑞  石必明 《煤炭技术》2022,(9):99-102
为探究朱集西煤矿13501综采工作面采空区的自然发火规律,通过低温氧化实验分析了煤在低温氧化时释放气体产物的特征,优选出标志性气体并作为13-1煤自燃预报指标气体。通过在工作面进风巷和回风巷两侧铺设束管以及使用热电偶监控测温的方法,监测采空区内的气体和温度,测量出采空区自燃“三带”分布,进风巷:0~36 m为散热带、36~81 m属于氧化升温带、大于81 m为窒息带;回风巷:0~27 m为散热带、27~63 m属于氧化升温带、大于63 m为窒息带。依据划分的自燃“三带”宽度,计算出采空区工作面安全推进速度为2.3 m/d。研究结果对朱集西煤矿防治煤炭自燃以及防灭火提供指导作用。  相似文献   

8.
为了解决人工自燃"三带"测点布置的空间和时间局限性,依托KJ428矿用分布式激光火情监测系统、束管维护技术、测点位置标记技术和"三带"可视化曲线绘制技术,实现自燃"三带"的动态和自动化分析。利用KJ428矿用分布式激光火情监测系统,得到31202采空区回风侧各测点的温度及各种气体浓度大小,根据其中氧气浓度大小可自动得出31202采空区回风侧散热带、氧化带和窒息带范围分别为:采面后方0~60 m、采面后方60~130 m和采面后方130 m至采空区深部,同时随着各测点监测数据的变化,可观测采空区自燃"三带"范围的变化规律。  相似文献   

9.
针对Ⅱ类自燃煤层易发生煤炭自燃的现状,以袁店一矿1023工作面所属10号煤层为研究对象,对1023工作面采空区煤炭的自燃氧化规律进行了研究。通过在采空区埋设抽气管路,测定采空区温度以及O2、CO2浓度等在工作面推进过程中的动态变化并进行分析。结果表明:采空区内CO2浓度分布符合"一源一汇"工作面的采空区漏风流场分布规律,且回风侧比进风侧更早进入窒息带;采空区自燃"三带"的具体分布范围:散热带距工作面中部距离为0~18.8 m,自燃带距工作面中部距离18.8~71.1 m,窒息带距工作面中部距离大于71.1 m,依据划分的自燃"三带"范围计算出该工作面最低适宜回采速度为42 m/月。  相似文献   

10.
为防治采空区自燃火灾发生,采用测定采空区温度和氧气浓度相结合方式对2324工作面采空区煤炭自燃三带进行了现场实测,得到了2324工作面采空区自燃三带宽度范围,并确定了工作面最小极限推进度。结果表明,2324工作面采空区三带范围为散热带小于11.82 m;自燃带11.82~65.90 m;窒息带大于65.90m,工作面回采时最小极限推进度为43 m/月。  相似文献   

11.
狄雷 《中州煤炭》2019,(7):68-71
为了解和掌握保德煤矿8号煤层自然发火规律,以81305综放工作面为研究对象,进行煤样升温氧化实验,得出8号煤层自燃指标性气体为CO、C2H4。通过现场实测采空区气体变化规律结合数值模拟,得出81305工作面采空区自燃氧化带的范围为:进风侧200~350 m;工作面中部220~400 m;回风侧100~220 m。计算出预防采空区自燃的工作面最安全的推进速度为61.71 m/月。并提出了保德煤矿8号煤层不同开采时期采空区自然发火防治措施。  相似文献   

12.
王伟东  王伟  李鹏  王刚 《煤矿安全》2020,(1):181-186
以五虎山煤矿010908工作面为背景,采用理论分析、数值模拟和现场实测等手段对浅埋深高瓦斯工作面瓦斯抽放对采空区自燃"三带"影响进行研究。研究结果表明:当瓦斯绝对涌出量与采空区漏风量处于均衡状态时,此时瓦斯对煤自燃将出现明显的耦合影响;当采空区漏风量小于瓦斯绝对涌出量时,采空区遗煤自燃将受到阻碍;与之相反,当漏风量大于瓦斯涌出量时,采空区遗煤自燃受瓦斯涌出量的影响较小;高位钻孔与工作面距离越远,采空区内部的漏风路径也越长,采空区氧化带、窒息带所处的区域越向采空区深部扩大,但靠近工作面一侧的氧化带范围并没有出现明显变化。  相似文献   

13.
高瓦斯矿井易自燃煤层,工作面受上隅角瓦斯超限与采空区遗煤自燃双重威胁。为解决高抽巷抽采瓦斯导致采空区氧化带面积变大、增大遗煤自燃危险性的问题,以顶板长钻孔替代高抽巷,配合进风巷侧注氮,通过对长钻孔参数与注氮参数的优化,进行防火与控瓦斯耦合治理的研究。以中兴煤业1401工作面实测数据结合ANSYS数值模拟,研究了长钻孔数量、位置对工作面上隅角瓦斯的影响规律,获得以5个直径300mm、距回风巷10m、距煤层底板15m的顶板长钻孔替代高抽巷的最优方案。在此基础上,为保障对采空区遗煤自燃的有效控制,研究了注氮量与注氮位置对采空区氧化带分布的影响规律,获得在进风巷侧氧化带与散热带分界位置注入5.5m3/min的氮气,将采空区氧化带宽度降至25m的优选结果。通过对上隅角瓦斯与采空区遗煤自燃的综合控制,保证了工作面的安全生产。  相似文献   

14.
为了预防老石旦矿16401工作面采空区遗煤自然发火现象,利用预先埋设在工作面巷道中的光纤传感系统对空气流动规律、氧气浓度分布以及采空区温度分布进行实时在线检测。根据预先设定的FLUENT软件数学模型构建速度场云图、O2浓度场云图以及温度场云图,并经过建立模型验证计算值与实测值的一致性,判定16401工作面采空区“三带”准确范围:距离推进工作面0~54m范围为散热带,54~88m为氧化自燃带,超过88m进入到窒息带,所测得数据为老石旦煤矿16401工作面采空区防灭火措施的可行性提供了坚实的理论基础依据。  相似文献   

15.
为研究采煤工作面覆岩两带(冒落带、裂隙带)与自燃三带(散热带、窒息带、氧化带)的关系,通过建立覆岩运移模型,应用CDEM软件模拟分析了试验工作面采动空间上覆岩层两带的扩展过程,分析垂向方向覆岩两带分布对水平方向上垮落煤岩堆积状态的影响情况。通过现场埋管实测的手段以及氧体积分数法进行了采空区煤自燃三带的划分。研究表明,冒落带高度稳定情况下,采煤推进距离(48 m)与采空区散热带和氧化带的分界线(进风侧采空区以里50 m左右,回风侧采空区以里40 m左右)有较好的吻合关系。裂隙带高度稳定情况(顶板150 m处的岩层最大下沉值趋于基本稳定)下,采煤推进距离(126 m)与采空区氧化带和窒息带的分界线有较好的对应关系。  相似文献   

16.
相邻工作面开采会导致复杂的漏风情况,浮煤易自燃,增大防火工作的难度。为明确相邻采空区自燃“三带”分布特征及确定最佳注氮防灭火参数,以贵州某矿4244工作面为背景,结合现场实测,应用Fluent流场分析软件,模拟研究不同注氮方案下采空区氧气浓度场分布规律。结果表明,实测结果与模拟相吻合,验证了模拟的可靠性;当注氮位置为X=50 m,注氮流量为100 m3/h时,采空区进、回风巷侧氧化带宽度分别为7 m和38 m,能明显减少本采空区氧化带面积,且能防止氧化带距工作面太近;此工作面进风侧注氮对相邻采空区氧化带影响范围较小,这要求在回采过程中需要对煤柱进行加固,降低孔隙率,控制漏风,减少氧气进入相邻采空区,降低煤自燃风险。模拟结果为相邻采空区灾害防治工作提供了的理论指导。  相似文献   

17.
针对塔山煤矿8204-2工作面上方地形复杂、只能在回采起点集中布置钻孔抽采瓦斯的特殊情况,利用数值模拟软件研究分析回采期间不同回采长度和不同注氮量下采空区氧气摩尔浓度分布情况,确定该特殊情况下采空区自燃"三带"和煤自燃危险区域。结果表明:远距离抽采瓦斯使煤自燃危险区域变大;随着回采长度的增长,自燃带逐渐变宽;当回采长度为50 m时,自燃带宽度增宽速率突然变大,进风侧自燃带变宽幅度与回采长度变长幅度比例比回采长度为30~50 m时高出180%,回风侧相应宽度则高出140%,遗煤自燃危险性变大;注氮可大幅度减小采空区煤自燃危险区域。  相似文献   

18.
苗永奇 《煤》2021,30(5):20-23
潞宁煤业侏2煤为Ⅱ级自燃煤层,为保证22116综放工作面撤架期间的稳定,采用氧气体积分数法划分了采空区自燃的“三带”,防灭火的重点为停采线后方170 m范围内的散热带和氧化带。通过采取以采空区封闭、两巷注浆和采空区持续注氮为主的综合防灭火措施,22116工作面支架回撤期间,未监测到采空区遗煤的自然发火征兆,取得了较好的效果,实现了工作面的安全顺利回撤。  相似文献   

19.
王飞  谷晓玲 《煤炭技术》2021,40(2):145-147
为研究高瓦斯综放工作面采顶抽巷治理瓦斯和注氮与遗煤自燃三者的相互影响,寻找最佳的抽放量与注氮流量,进行实验分析;并分析了遗煤自燃抽放、注氮、温度场、O2场、CH4场影响关系图。实验表明:顶抽巷附近20 m范围内随抽放量的增加,O2浓度10%曲线逐渐向采空区延伸,采空区"三带"随之增加。受抽采半径及吸入工作面空气影响,抽放瓦斯纯度出现先增加后降低情形。随着注氮量的增加,进风侧"三带"变化浮动明显,并且对顶抽巷附近"三带"宽度也有所降低。"三带"降低率先增加后降低。81505工作面抽放量700 m3/min,注氮量2 200 m3/h时,有利于采空区防灭火。该研究为综放工作面采空区遗煤自燃治理提供参考。  相似文献   

20.
为了解决采空区煤层气抽采效率低、采空区漏风、煤层自然发火等问题,建立了采空区流场和温度场耦合数学模型,利用FEMLAB软件对采空区气体流场分布进行了数值模拟,分析了有无抽采对采空区煤层气改变氧化升温带的主要影响因素,以此研究合理的抽采位置、抽采方法、抽采量及工作面推进速度。研究发现,在推进度v=2.0 m/d下,采空区经历了缓慢氧化、加剧氧化和激烈氧化3个过程,70 d后发生采空区自燃;在推进度v=2.6 m/d下,采空区在100 d后发生采空区自燃;采空区自燃危险区域应在35~280 m,自燃氧化带宽度约为245 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号