首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Uniformly dispersed boron nitride nanosheets (BNNSs) reinforced silicon nitride (Si3N4) composites were prepared by surface modification assisted flocculation combined with SPS sintering. In order to improve the dispersibility of the BNNSs in the composites, the liquid phase stripped BNNSs are surface functionalized by a two-step covalently modification. The amino-modified BNNSs (NH2-BNNSs) and Si3N4 powders have opposite surface potential, mixed evenly by electrostatic interaction during flocculation. The results showed that mechanical properties of Si3N4 composites were obviously enhanced by adding NH2-BNNSs. The fracture toughness and bending strength of Si3N4 composites added 0.75 wt% NH2-BNNSs were increased by 34% and 28%, respectively, compared with monolithic Si3N4. Toughening mechanisms are synergistic action of the torn, pull-out or bridging of BNNSs and crack deflection mechanisms with microstructural analyzes. The dielectric properties of the Si3N4 ceramics are also improved after the addition of NH2-BNNSs.  相似文献   

2.
《Ceramics International》2019,45(9):11368-11374
The monolithic silicon carbide (SiC) aerogels were converted from catechol-formaldehyde/silicon composite (CF/SiO2) aerogels through carbothermal reduction and calcination. In the process of preparing the CF/SiO2 aerogel, a new method was proposed to produce more silicon carbide and enhanced the mechanical properties of the SiC aerogel. This method was realized by adding an alkaline silica sol as supplemental silicon source. The principle process of CF/SiO2 aerogels converting to SiC aerogels was discussed based on experiment and results analysis, while the microstructure, mechanical properties, and thermal properties of the prepared SiC aerogels were investigated. The results show that the as-synthesized SiC aerogels consist of β-SiC and a small amount of α-SiC nanocrystalline. It possessed a mesoporous structure and a low thermal conductivity 0.049 W/(m∙K), a relatively high compressive strength 1.32 MPa, and a relatively high specific surface area 162 m2/g. Due to their outstanding thermal and mechanical properties, the prepared SiC aerogels present potential applications in thermal insulation field, such as space shuttles and aerospace carrier thermal protection materials.  相似文献   

3.
《Ceramics International》2023,49(20):32577-32587
Owing to the rapid development of the latest micro-electronic devices, polymer composite materials that combine high thermal conductivity and low permittivity have aroused the interest of researchers. However, it is a huge challenge to balance the above parameters. In this work, hexagonal boron nitride (h-BN) powder was ultrasonically exfoliated to obtain alkylated boron nitride nanosheets (Alkyl-BNNS). Then, a series of polyimide (PI) composites were synthesized with different amounts of Alkyl-BNNS. Attributed to more robust interfacial non-covalent interactions between Alkyl-BNNS and polymer chains to inhibit interfacial polarization, Alkyl-BNNS can be scattered well in PI substrate. Thus, the obtained PI composite behaved a high thermal conductivity of 6.21 W/(mK) and a low dielectric constant (3.23) under the load of 20 wt%. Besides, Alkyl-BNNS/PI composites have efficient thermal management capability, low water absorption, favorable electrical resistance, and prominent tensile strength. Importantly, these composite films are expected to be excellent candidates in the field of microelectronics.  相似文献   

4.
Polyimide/mica (PI/mica) hybrid films were prepared from pyromellitic dianhydride/4,4-bis(3-aminophenoxy)biphenyl (PMDA/4,3-BAPOBP) and mica in a solution of N,N-dimethylacetamide. The structure–property relationships of the composites were studied by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible spectroscopy and differential scanning calorimetry. FTIR indicated successful preparation of PI/mica hybrid films. XRD and SEM results indicated that the mica was well dispersed in the PI matrix. The dependence of morphology, glass transition temperatures (Tg), dielectric properties and mechanical properties at room temperature of the hybrid films on the content of mica was discussed. It was observed that Tg, the breakdown strength and tensile strength of the hybrid films, could be simultaneously increased when the mica content was lower than 8?wt-%. Meanwhile, the dielectric constant and dielectric loss of PI/mica hybrid films increased with the increase in the mica content.  相似文献   

5.
A new kind of polymer composite, produced from the typical polybenzoxazine and 0–30 wt-% native and silane-treated aluminium nitride (T-AlN), was investigated. The mechanical tests revealed a significant increase in the microhardness and flexural properties upon adding the T-AlN particles compared to that obtained from the untreated ones. By adding 0–30 wt-% T-AlN, the tensile moduli were accurately reproduced by the Halpin-Tsai and Nielsen models. At 30 wt-% T-AlN, dynamic mechanical analysis showed a significant increase in the storage moduli and the glass transition temperature (Tg), reaching 3.2?GPa and 217°C, respectively. The thermal stability of these materials was significantly improved upon the addition of the T-AlN fillers. These improvements are attributed to the high thermal and mechanical properties of the fillers and their good dispersion and adhesion in and to the matrix as revealed by a morphological analysis.  相似文献   

6.
Porous silicon nitride ceramics with a fibrous interlocking microstructure were synthesized by carbothermal nitridation of silicon dioxide. The influences of different starting powders on microstructure and mechanical properties of the samples were studied. The results showed that the microstructure and mechanical properties of porous silicon nitride ceramics depended mostly on the size of starting powders. The formation of single-phase β-Si3N4 and the microstructure of the samples were demonstrated by XRD and SEM, respectively. The resultant porous Si3N4 ceramics with a porosity of 71% showed a relative higher flexural strength of 24 MPa.  相似文献   

7.
《Ceramics International》2022,48(15):21520-21531
How to deal with the brittleness of ceramic materials is always one of the hot topics in the field of materials science. Design of layered ceramics with textured structure is one of the effective methods to improve their fracture toughness. The introduction of additives as interlayer phases can balance fracture toughness and flexural strength. However, the research about addition of interlayer phases and their mechanisms in the layered ceramics is still limited. In this work, nacre-like alumina ceramics were successfully fabricated by freeze casting followed by hot pressing. Silicon nitride was incorporated as the interlayer phase, and the effect on the mechanical properties of the nacre-like alumina was investigated. The addition of silicon nitride was beneficial to improvement of interlayer bonding between the alumina layers due to formation of sialon phase, leading to increase of flexural strength but decease of fracture toughness. When the content of silicon nitride was 3.3 wt%, flexural strength and fracture toughness of the sample was 468 MPa and 6.2 MPa m1/2, respectively. Compared with the sample without silicon nitride, the flexural strength was enhanced significantly. Additionally, both flexural strength and fracture toughness were improved as compared the sample without any additives. This work can provide available references for design and fabrication of high-strength and high-toughness ceramics by properly tuning the layer structure and interlayer phase composition.  相似文献   

8.
In this study, silicon nitride (Si3N4) ceramics added with and without boron nitride nanotubes (BNNTs) were fabricated by hot-pressing method. The influence of sintering temperature and BNNTs content on the microstructures and mechanical properties of Si3N4 ceramics were investigated. It was found that both flexural strength and fracture toughness of Si3N4 were improved when sintering temperature increases. Moreover, α-Si3N4 phase could transform into β-Si3N4 phase completely when sintering temperature rises to 1800 °C and above. BNNTs can enhance the fracture toughness of Si3N4 dramatically, which increases from 7.2 MPa m1/2 (no BNNTs) to 10.4 MPa m1/2 (0.8 wt% BNNTs). However, excessive addition of BNNTs would reduce the fracture toughness of Si3N4. Meanwhile, the flexural strength and relative density of Si3N4 decreased slightly when BNNTs were added. The related toughening mechanism was also discussed.  相似文献   

9.
《Ceramics International》2017,43(11):8230-8235
Porous boron nitride/silicon oxynitride (BN/Si2N2O) composites were fabricated by pressureless sintering at 1650 °C with Li2O as sintering aid. The influence of Li2O and hexagonal boron nitride (h-BN) contents on phase, microstructure, mechanical, dielectric and thermal properties of the resulting porous BN/Si2N2O composites was investigated. Increasing Li2O content facilitated densification and decomposition of Si2N2O into Si3N4. The apparent porosity of the composites increases with the h-BN content increases and Si2N2O grain growth was restrained by the dispersed h-BN particles. The dielectric properties and thermal conductivities (TC) were affected mainly by porosity. Porous BN/Si2N2O ceramic composites with 4 mol% Li2O and 25 mol% BN exhibit both low dielectric constant (3.83) and dielectric loss tangent (0.008) with good mechanical and thermal performance, suggesting possible use as high-temperature structural/functional materials.  相似文献   

10.
《Ceramics International》2019,45(10):12757-12763
Dense silicon nitride (Si3N4) ceramics were prepared using Y2O3 and MgF2 as sintering aids by spark plasma sintering (SPS) at 1650 °C for 5 min and post-sintering annealing at 1900 °C for 4 h. Effects of MgF2 contents on densification, phase transformation, microstructure, mechanical properties, and thermal conductivity of the Si3N4 ceramics before and after heat treatment were investigated. Results indicated that the initial temperature of liquid phase was effectively decreased, whereas phase transformation was improved as increasing the content of MgF2. For optimized mechanical properties and thermal conductivity of Si3N4, optimum value for MgF2 content existed. Sample with 3 mol.% Y2O3 and 2 mol.% MgF2 obtained optimum flexural strength, fracture toughness and thermal conductivity (857 MPa, 7.4 MPa m1/2 and 76 W m−1 K1, respectively). It was observed that excessive MgF2 reduced the performance of the ceramic, which was caused by the presence of excessive volatiles.  相似文献   

11.
Crystallization behavior of an amorphous silicon nitride powder produced in an RF thermal plasma by the vapor-phase reaction of silicon tetrachloride and ammonia has been investigated. Effects of annealing conditions such as temperature and duration of heat treatment on the properties of powders were studied. Changes in the chemical and phase compositions, as well as in the morphology of powders were measured and interpreted. Annealing of the amorphous silicon nitride powder at 1450°C for 120 min resulted in a powder of about 80% crystalline phase content with an /β ratio of about 6.5. ©  相似文献   

12.
Advanced silicon nitride (Si3N4) ceramics were fabricated using a mixture of Si3N4 and silicon (Si) powders via conventional processing and sintering method. These Si3N4 ceramics with sintering additives of ZrO2 + Gd2O3 + MgO were sintered at 1800 °C and 0.1 MPa in N2 atmosphere for 2 h. The effects of added Si content on density, phases, microstructure, flexural strength, and thermal conductivity of the sintered Si3N4 samples were investigated in this study. The results showed that with the increase of Si content added, the density of the samples decreased from 3.39 g/cm3 to 2.92 g/cm3 except for the sample without initial Si3N4 powder addition, while the thermal diffusivity of the samples decreased slightly. This study suggested that addition of Si powder, which varied from 0 to 100%, in the starting materials might provide a promising route to fabricate cost-effective Si3N4 ceramics with a good combination of mechanical and thermal properties.  相似文献   

13.
Preparation and properties of LDHs/polyimide nanocomposites   总被引:1,自引:0,他引:1  
Layered double hydroxides/polyimide (LDHs/PI) nanocomposites were prepared from solution of polyamic acid (polyimide precursor) and LDH-amino benzoate using N,N-dimethylacetamide as a solvent. LDH-amino benzoate (LDH-AB) was obtained by coprecipitation method. The amino benzoate, grafted on the surface of the Mg/Al nanolayers, as a connector improved the compatibility between the inorganic Mg/Al nanolayers and the organic polyimide molecules. The dispersion behavior of Mg/Al nanolayers was investigated by transmission electron microscopy and X-ray diffraction, indicating that the Mg/Al nanolayers were exfoliated in PI matrix to form LDH-AB/PI nanocomposites. The maximum tensile strength and elongation of the LDH-AB/PI nanocomposites were found with the LDH-AB content of 5 and 4 wt%, respectively. The initial tensile modulus of these nanocomposites was increased with the LDH-AB content. These nanocomposites exhibited higher storage and loss moduli compared to those of pure PI. Tg of these nanocomposites increased with the LDH-AB content. Coefficients of thermal expansion (CTE, below and above Tg) of these nanocomposites deceased with the LDH-AB content. The thermal properties of these nanocomposites were enhanced by the incorporation of Mg/Al nanolayers in PI matrix.  相似文献   

14.
The high temperature crystallization behavior of polytitanosilazane-derived amorphous SiTiN ceramics was investigated in a nitrogen atmosphere using XRD, Raman spectroscopy, TEM, SEM and BET. At 1400 °C, TiN is the first phase to nucleate in SiTiN ceramics forming nanocomposites with a homogeneous distribution of TiN nanocrystals within an amorphous Si3N4 matrix. Above 1400 °C, XRD indicates that the temperature at which Si3N4 crystallizes depends on the volume fraction of TiN present in nanocomposites. This is closely related to the chemistry of the polyorganosilazanes used to synthesize polytitanosilazanes. The use of perhydridopolysilazane, the most reactive polyorganosilazane, allows preparing TiN/Si3N4 nanocomposites with a remarkable stability of the amorphous matrix up to 1800 °C as mesoporous materials and powders. Dense monoliths crystallize earlier than the powder analogs because of the use of an ammonia pre-treatment before polymer warm-pressing.  相似文献   

15.
In this work, the thermal expansion properties of carbon nanotube (CNT)-reinforced nanocomposites with CNT content ranging from 1 to 15 wt% were evaluated using a multi-scale numerical approach, in which the effects of two parameters, i.e., temperature and CNT content, were investigated extensively. For all CNT contents, the obtained results clearly revealed that within a wide low-temperature range (30°C ~ 62°C), thermal contraction is observed, while thermal expansion occurs in a high-temperature range (62°C ~ 120°C). It was found that at any specified CNT content, the thermal expansion properties vary with temperature - as temperature increases, the thermal expansion rate increases linearly. However, at a specified temperature, the absolute value of the thermal expansion rate decreases nonlinearly as the CNT content increases. Moreover, the results provided by the present multi-scale numerical model were in good agreement with those obtained from the corresponding theoretical analyses and experimental measurements in this work, which indicates that this multi-scale numerical approach provides a powerful tool to evaluate the thermal expansion properties of any type of CNT/polymer nanocomposites and therefore promotes the understanding on the thermal behaviors of CNT/polymer nanocomposites for their applications in temperature sensors, nanoelectronics devices, etc.  相似文献   

16.
In this work, hybrids of surface modified zinc oxide spherical (ZnOs) nanoparticles and tetrapod‐shaped whiskers (ZnOw) were incorporated into the silicon rubber (SR) to prepare the ZnOs/ZnOw/SR nanocomposites. The incorporation of the ZnOs/ZnOw facilitated the formation of three‐dimensional thermally conducting network. It was found that the thermal conductivity of the ZnOs/ZnOw/SR reached up to 1.309 W m?1 K?1 when the ZnOs/ZnOw content was 20 vol % (Vm‐ZnOs:VZnOw = 7:3), which was nearly 6.5 times that of the pristine SR. The dielectric and resistivity measurements showed that the incorporation of the ZnOs/ZnOw hybrids did not cause much change in the electrical properties. In addition, the results show that the tensile strength of ZnOs/ZnOw/SR nanocomposites is higher than that of pristine SR. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46454.  相似文献   

17.
SiC based composites were manufactured with varying TiN content (0–50 V%) using Al2O3 and Y2O3 sintering aids. Basic dilatometry measurements were performed to determine when densification begins within the composite system. Samples were consolidated via uni-axial hot pressing at 1900 °C to produce ceramic composites with >98% theoretical density. Electrical measurements show increasing TiN additions reduce resistivity and begin to plateau at 40–50V%. Resistivity decreased from 2.0 × 105 Ω  cm (0% TiN) to 2.0 × 10−4 Ω  cm (50V% TiN). Flexural strengths were characterized and compared against a baseline (0% TiN) SiC. Strengths increased gradually with TiN content. A maximum strength 921 MPa was observed at 40V% TiN content vs. 616 MPa for the baseline SiC. This was a gain of 50% over baseline. Additions beyond that range did not produce further gains in strength.  相似文献   

18.
Sintered reaction-bonded silicon nitride (SRBSN) with high thermal conductivity was obtained using (Y0.96Eu0.04)2O3 and MgO as sintering additives. Green compacts were nitrided at 1400°C for 4 h. Post-sintering was carried out at 1850 and 1900°C for 4 h, respectively. In reaction-bonded silicon nitride (RBSN) doped with Y2O3 and MgO, the β-Si3N4 content and nitridation degree were 51.1% and 93.8%, respectively. However, the β-Si3N4 content and nitridation degree were 72.6% and 96.7% in a nitrided compact doped with (Y0.96Eu0.04)2O3 and MgO. After post-sintering, the phase composition, microstructure, mechanical properties, and thermal conductivity were investigated. After sintering at 1900°C for 4 h, the thermal conductivity of SRBSN doped with (Y0.96Eu0.04)2O3 and MgO was increased by 16.5% compared to that of the samples doped with Y2O3 and MgO. The highest hardness of 1639 HV and the good flexural strength of 776.4 MPa were also achieved in the sample doped with 2-mol.% (Y0.96Eu0.04)2O3 and 5-mol.% MgO.  相似文献   

19.
High-purity silicon powder is used as the starting material for cost-effective preparation of silicon nitride ceramics with both high thermal conductivity and excellent mechanical properties using RE2O3 (RE=Y, La or Er) and MgO as sintering additives. Nitridation is a key procedure that would affect the properties of green bodies and the sintered samples. The β: (α+β) ratio can be increased as the samples nitrided at 1450ºC and a large amount of long rod-like β-Si3N4 grains were developed in the samples. It was found that the addition of Er2O3-MgO could help to improve the mechanical properties of the sintered Si3N4 ceramics, the thermal conductivity, flexural strength and fracture toughness of the sample were 90 W/(m∙K), 953±28.3 MPa and 10.64±0.61 MPa·m1/2, respectively. The RE3+ species with larger ionic radius tended to increase the oxygen of nitrided samples and decrease N/O ratio (triangle grain boundary) of sintered samples.  相似文献   

20.
Layer-aligned poly(vinyl alcohol)/graphene nanocomposites in the form of films are prepared by reducing graphite oxide in the polymer matrix in a simple solution processing. X-ray diffractions, scanning electron microscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis are used to study the structure and properties of these nanocomposites. The results indicate that graphene is dispersed on a molecular scale and aligned in the poly(vinyl alcohol) (PVA) matrix and there exists strong interfacial interactions between both components mainly by hydrogen bonding, which are responsible for the change of the structures and properties of the PVA/graphene nanocomposites such as the increase in Tg and the decrease in the level of crystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号