首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
合成了一种由N-乙基苯胺和苯胺共聚的高聚物,并制备了其4种掺杂态共聚物膜。实验中在不同压力、不同进料组成下测试了共聚物膜及聚砜膜对CO2/CH4混合气的分离性能。实验结果表明:掺杂态不同对气体的分离性能有很大影响,其中二次掺杂态的分离系数最高,可达70,而去掺杂态的渗透速率最高,CO2可达2.15 GPU[1 GPU=7.501×10-10cm3/(cm2.s.Pa)],CH4达到0.049 GPU,均高于聚砜膜和文献中报道的聚苯胺膜的值,这是由于N-乙基的引入,改变了聚合物链的柔韧性。  相似文献   

2.
We have studied the mixed gas permeation in hollow fiber membrane modules using two approaches: namely, the co- current plug flow model and the complete mixing model with the combination of experimental data. Elucidation was made to determine the permeance of CO2 and CH4 and the selectivity of CO2/CH4 in a polyimide hollow fiber membrane permeator It is found that the intrinsic gas separation properties of hollow fibers for mixed gases can be accurately determined based on (1) the cocurrent plug now model, and (2) the complete mixing model with the assumption of averaged retentate concentration of the feed and the retentate outlet.  相似文献   

3.
Membrane-based CO2 separation is a promising alternative in terms of energy and environmental issues to other conventional techniques.Polyether-polyamide block copolymer (Pebax) membranes are promising for CO2 separation because of their excellent selectivity,but limited by their moderate gas permeability.In this study,fresh-prepared zeolitic imidazolate framework-8 (ZIF-8) nanocrystals were integrated into the Pebax(R)1657 matrices to form mixed matrix membranes.The resulting membrane exhibits significantly improved CO2 permeability (as high as 300% increase),without the sacrifice of the selectivity,to the pristine polymer membrane.Several physical characterization techniques were employed to confirm the good interfacial interaction between ZIF-8 fillers and Pebax matrices.The effect of added ZIF-8 fillers on the transport mechanism through MMMs is also explored.Mixed-gas permeation for both CO2/N2 and CO2/CH4 was also evaluated.The separation performance for CO2/CH4 mixtures on the ZIF-8/Pebax MMMs is very close to the Roberson upper bound,and thus is technologically attractive for purification of natural gas.  相似文献   

4.
Separation of the radioisotope 85Kr from 136Xe is an important target during used nuclear fuel recycling. We report a detailed study on the Kr and Xe adsorption, diffusion, and membrane permeation properties of the silicoaluminophosphate zeolite SAPO‐34. Adsorption and diffusion measurements on SAPO‐34 crystals indicate their potential for use in Kr‐Xe separation membranes, but also highlight competing effects of adsorption and diffusion selectivity. SAPO‐34 membranes are synthesized on α?alumina disk and tubular substrates via steam assisted conversion seeding and hydrothermal growth, and are characterized in detail. Membrane transport measurements reveal that SAPO‐34 membranes can separate Kr from Xe by molecular sieving, with Kr permeabilities around 50 Barrer and mixture selectivity of 25–30 for Kr at ambient or slight sub‐ambient conditions. The membrane transport characteristics are modeled by the Maxwell‐Stefan equations, whose predictions are in very good agreement with experiment and confirm the minimal competing effects of adsorption and diffusion. © 2016 American Institute of Chemical Engineers AIChE J, 63: 761–769, 2017  相似文献   

5.
不同结构活性炭对CO_2、CH_4、N_2及O_2的吸附分离性能   总被引:2,自引:1,他引:1  
制备了比表面积为1943 m2/g的纯微孔活性炭AC-1和比表面积为1567 m2/g,中孔比例为47.18%的活性炭AC-2.分别以AC-1及AC-2为吸附剂测定CO2、CH4、N2和O2的298 K吸附等温线,考察了两种活性炭对CO2/N2、CO2/CH4及CH4/N2气体混合物的吸附分离性能.实验结果表明,孔结构是影响吸附剂吸附分离性能的主要因素.富中孔活性炭AC-2较AC-1更适用于CO2/N2、CO2/CH4气体混和物的吸附分离,而微孔活性炭AC-1对CH4/N2混合体系的吸附分离性能优于AC-2.  相似文献   

6.
Increasing helium (He) demand in fundamental research,medical,and industrial processes necessitates efficient He purification from natural gas.However,most theoretically available membranes focus on the separation of two or three kinds of gas molecules with He and the underlying separation mechanism is not yet well understood.Using molecular dynamic (MD) and first-principle density function theory (DFT)simulations,we systematically demonstrated a novel porous carbon nitride membrane (g-CgN7) with superior performance for He separation from natural gas.The structure of g-C9N7 monolayer was opti-mized first,and the calculated cohesive energy confirmed its structural stability.Increasing temperature from 200 to 500 K,the g-C9N7 membrane revealed high He permeability,as high as 1.48 × 107 GPU (gas permeation unit,1 GPU =3.35 × 10-10 mol·s-1·Pa-1·m-2) at 298 K,and also exhibited high selectivity for He over other gases (Ar,N2,CO2,CH4,and H2S).Then,the selectivity of He over Ne was found to decrease with increasing the total number of He and Ne molecules,and to increase with increasing He to Ne ratio.More interestingly,a tunable He separation performance can be achieved by introducing strain during membrane separation.Under the condition of 7.5% compressive strain,the g-C9N7 membrane reached the highest He over Ne selectivity of 9.41 × 102.It can be attributed to the low energy barrier for He,but increased energy barrier for other gases passing through the membrane,which was subject to a com-pressive strain.These results offer important insights into He purification using g-C9N7 membrane and opened a promising avenue for the screening of industrial grade gas separation with strain engineering.  相似文献   

7.
近年来,含硅聚合物由于其特殊的化学性质而成为科研热点.文章进行了烯丙氧基三甲基硅烷的均聚以及其分别与甲基丙烯酰氧乙氧基三甲基硅烷和乙酸乙烯酯单体的共聚研究.用凝胶渗透色谱仪测试了共聚物的分子量并计算其聚合度,并将所得聚合物做成气体分离膜,采用膜分离测试分析仪测试它们的气体透过性能.结果表明:烯丙氧基三甲基硅烷与乙酸乙烯酯共聚物膜对CO2具有优先选择透过性,在CH4/CO2的气体透过性测试中分离率达到了3.1,在N2/CO2的气体透过性测试中分离率更是达到了11.5.  相似文献   

8.
Permeabilities and selectivities of gases such as carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen (N2) and methane (CH4) in six imidazolium-based ionic liquids ([emim][BF4], [bmim][BF4], [bmim][PF6], [hmim][BF4], [bmim][Tf2N] and [emim][CF3SO3]) supported on polyethersulfone microfiltration membranes are investigated in a single gas feed system using nitrogen as the environment and reference component at temperature from 25 to 45ºC and pressure of N2 from 100 to 400 kPa. It is found that SO2 has the highest permeability in the tested supported ionic liquid membranes, being an order of magnitude higher than that of CO2, and about 2 to 3 orders of magnitude larger than those of N2 and CH4. The observed selectivity of SO2 over the two ordinary gas components is also striking. It is shown experimentally that the dissolution and transport of gas components in the supported ionic liq-uid membranes, as well as the nature of ionic liquids play important roles in the gas permeation. A nonlinear in-crease of permeation rate with temperature and operation pressure is also observed for all sample gases. By considering the factors that influence the permeabilities and selectivities of CO2 and SO2, it is expected to develop an optimal supported ionic liquid membrane technology for the isolation of acidic gases in the near future.  相似文献   

9.
Novel Composite Membranes for Gas Separation: Preparation and Performance   总被引:2,自引:0,他引:2  
High performance composite membranes based on molecular sieving silica (MSS) were synthesized using sols containing silicon co-polymers (methyltriethoxysilane and tetraethylorthosilicate). Alpha alumina supports were treated with hydrochloric acid prior to sol deposition. Permselectivity of CO2 over CH4 as high as 16.68 was achieved whilst permeability of CO2 up to 36.7 GPU (10–6 cm3 (STP) cm–2 · s–1 · cm Hg–1) was measured. The best membrane's permeability was finger printed during various stages of the synthesis process showing an increase in CO2/CH4 permselectivity by over 25 times from initial support condition (no membrane film) to the completion of pore structure tailoring. Transport measurement results indicate that the membrane pretreated with HCl has highest permselectivity and permeation rate. In particular, there is a definite cut-off pore size between 3.3 and 3.4 angstroms which is just below the kinetic diameters of Ar and CH4. This demonstrates that the mechanism for the separation in the prepared composite membrane is molecular sieving (activated diffusion), rather than Knudsen diffusion.  相似文献   

10.
Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was developed by interfacial polymerization between 1,3–cyclohexanebis–methylamine(CHMA) and trimesoyl chloride(TMC). ATR-FTIR, SEM and AFM were used to characterize the active thin layer formed inside the PSf hollow fiber. The separation behavior of the CHMA-TMC/PSf membrane was scrutinized by studying various effects like feed gas pressure and temperature. Furthermore, the influence of CHMA concentration and TMC concentration on membrane morphology and performance were investigated. As a result, it was found that mutually the CHMA concentration and TMC concentration play key roles in determining membrane morphology and performance. Moreover, the CHMA-TMC/PSf composite membrane showed good CO_2/CH_4 separation performance. For CO_2/CH_4 mixture gas(30/70 by volume) test, the membrane(PD1 prepared by CHMA 1.0% and TMC 0.5%) showed a CO_2 permeance of 25 GPU and the best CO_2/CH_4 selectivity of 28 at stage cut of 0.1. The high CO_2/CH_4 separation performance of CHMA-TMC/PSf thin film composite membrane was mostly accredited to the thin film thickness and the properties of binary amino groups.  相似文献   

11.
新型CO_2分离膜的气体吸着性能   总被引:3,自引:2,他引:1       下载免费PDF全文
引 言石油气和天然气中含有的大量CO2 直接影响以这些气体为原料的产品质量 ,并对管线和设备造成腐蚀 .同时 ,由于CO2 等气体导致的温室效应已引起严重后果 .因此 ,如何分离或脱除CO2 成为人们的研究热点 .采用膜技术分离气体由于具有节约能源、操作简便等优点已得到了很大的发展[1~ 3] .最初用于气体分离的主要膜材料多为普通高分子聚合物 ,如醋酸纤维素、聚酰亚胺等 .至今这些膜材料仍在不断的开发和应用 .但由于Robeson上限[4 ] 的存在 ,使其很难同时具有高选择性和高透过率 ,研制新型膜材料是解决此问题的一个重要途径 .…  相似文献   

12.
采用体积法在273 K和303 K温度下对CO2、CH4和N2在不同硅/铝比的β沸石上的吸附分离性能进行了研究。实验结果表明,Langmuir-Freundlich模型能够较好地拟合吸附实验数据;同一样品上,CO2的吸附量要大于CH4和N2的吸附量;随着硅铝比的减小CO2的吸附量增加,而硅/铝比对CH4和N2的吸附量的影响较小。通过结合Virial方程计算CO2、CH4和N2在不同硅/铝比β沸石上的亨利定律常数和吸附选择性,发现所研究样品对CO2/CH4和CO2/N2均具有很高的吸附选择性,随着样品硅/铝比的减小,CO2/CH4和CO2/N2的吸附选择性显著增加,说明较低硅/铝比β沸石有利于分离CO2。用Clausius-Clapeyron方程求得CO2、CH4和N2在不同硅/铝比的β沸石上的吸附热与吸附量无关,表明β沸石是一种表面势场均匀的吸附剂。  相似文献   

13.
稀有气体Xe/Kr的高效捕集分离是气体工业、核环境监测和乏燃料处理等领域的重要分离过程之一。氙与氪结构与极化率相似,传统低温精馏方法借助氙与氪的沸点差异实现二者分离,能耗巨大,吸附分离是较为理想的替代分离技术。以金属有机框架材料为代表的新型多孔材料具有结构多样性与高度可设计性,通过调节材料微孔表面的极化环境与孔道窗口结构,借助氙与氪极化率的微小差异,可实现对二者的精准辨识,有良好的吸附分离性能与应用前景。重点综述了金属有机框架材料在氙氪分离中的研究进展,归纳了材料的极化环境、孔道结构、框架柔性等因素对氙氪吸附分离性能的影响规律,探讨了金属有机框架材料在氙氪吸附分离研究中存在的问题和局限,并对未来发展方向进行了展望。  相似文献   

14.
Two isomeric metal-organic frameworks(MOFs) with 2-dimensional(2D) and 3-dimensional(3D) topologies both comprised of Cu(Ⅱ) and OTf(OTf = trifluoromethanesulfonate) ions were synthesized and characterized.The CO_2,CH_4 and N_2 adsorption properties of the two isomeric MOFs were investigated from 263 K to 298 K at0.1 MPa.The results showed that the 2D MOF exhibited a higher selectivity for CO_2 from CO_2/CH_4 and CH_4from CH_4/N_2 compared to the 3D MOF,even though it possessed a lower surface area and pore volume.The higher adsorption heats of gases on the 2D MOF inferred the strong adsorption potential energy in the layered MOFs.Dynamic separation experiments using CO_2/CH_4 and CH_4/N_2 mixtures on the two MOFs proved that the2 D MOF had a longer elution time than the 3D MOF as well as better separation abilities.  相似文献   

15.
PTFE多孔膜气体渗透数学模型和膜孔结构的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
Membrane-based separation processes are new technology combined membrane separation with conventional separation. Hydrophobic porous membranes are often used in these processes. The structure of hydrophobic porous membrane has significant effect on mass transfer process. The permeabilities of five kinds of gas, He, N2,O2, CO2 and water vapor, across six polytetrafluoroethylene(PTFE) fiat membranes were tested experimentally.Results indicated that the greater the membrane mean pore size and the wider the pore size distribution are, the higher the gas permeability. A gas permeation model, including the effects of membrane structure parameter and gas properties, was established. A comprehensive characteristic parameter (including porosity, thickness and tortuosity) was found more effective to express the influence of membrane structure in gas permeation process. The predicted permeation coefficients were in good agreement with experimental data.  相似文献   

16.
为了进一步提高支撑型离子液体膜的制备效率及其CO2气体分离性能,将离子液体[Emim][BF4]以超临界流体沉积法负载到非对称的Al2O3支撑体内,制备了一系列支撑型离子液体膜,分别测定了CO2和N2两种纯气体在其中的渗透率,探究了制备参数(沉积时间、离子液体加入量和共溶剂加入量)对膜性能的影响规律.结果表明,基于[E...  相似文献   

17.
The irradiation of microspheres of ThO2 and Th0.81U0.19O2in the form of high-temperature gas-cooled reactor (HTGR) particles resulted in the buildup of CO as well as Kr + Xe within the particle. The particles were later equilibrated at 1325 T 2270 K, crushed, and the CO and Kr + Xe contents were measured. Oxygen released as CO can be represented by the expression O/ f =74.6 F exp (–7400/ T ), where O/ f is the moles of oxygen released per mole of fissioned actinide, F is fission per initial heavy-metal atom, and T is the equilibration temperature. This oxygen release is reasonably consistent with that predicted from thermodynamic data for the oxides of the fuel and fission products. The burnup dependence of the release of Kr and Xe to the void space within the particle was consistent with published data and approached the theoretical value for the 233u-235U system, (Kr+Xe)/ f 0.32.  相似文献   

18.
纳米晶种涂层法合成Silicalite-1沸石膜   总被引:6,自引:1,他引:5  
用纳米晶种涂层二次生长成膜法在大孔a-Al2O3(孔径4~6 mm)陶瓷管上合成Silicalite-1沸石膜. 用X射线衍射(XRD)和扫描电镜(SEM)表征分析了沸石膜的形态,并通过单组分气体渗透实验对合成膜管的渗透性能进行了测试. 结果表明,合成的Silicalite-1沸石膜连续、互生,看不出晶间孔;沸石膜层厚8~10 mm;常温常压下H2/N2的理想分离系数为3.9,超过其努森扩散值3.74,H2/C3H8的理想分离系数为19.1,远大于其Knudsen扩散比值4.69,且H2的渗透率达到1.43′10-6 mol/(m2×s×Pa). 气体分离数据表明,该膜没有明显的缺陷存在.  相似文献   

19.
通过自由基聚合制备了丙烯酰胺(AM)和马来酸酐(MA)共聚合物.粘度法测定了聚合物的相对分子量,元素分析法和FTIR等分析表征了共聚物的化学结构,此外研究了共聚合物对CO2和CH4的溶胀吸附性能.在本实验条件下,共聚物的相对分子量、共聚物中两种单体的摩尔数之比m/n、对CO2的平衡吸附量等随聚合过程中单体配比AM/MA的增加而增大;共聚合物的相对分子量在7~17万之间,共聚物中两种单体的摩尔数之比在5~30之间,对CO2的平衡吸附量在45~70mg(CO2)· (g(干膜)) -1之间;而共聚物对CH4的平衡吸附量仅为4mg(CH4)·( g(干膜))-1左右,且不随单体配比AM/MA的增加而变化,这表明丙烯酰胺和马来酸酐共聚合物作为CO2/CH4分离用膜材料,具有较好的CO2优先选择吸附性能.  相似文献   

20.
The designability and ultrahigh stability of zirconium–organic frameworks make them attractive adsorbents for noble gases xenon (Xe) and krypton (Kr), but their Xe/Kr separation performance needs to be further enhanced. In this study, we rationally control the topology and porosity of zirconium–fumarate frameworks by simply changing the synthesis conditions, and successfully construct an adsorbent (named as MIP-203-F) with one-dimensional pore instead of the original cage-like fcu metal–organic framework MOF-801. The Xe/Kr separation performance of MIP-203-F is thoroughly evaluated by isotherm measurements and breakthrough experiments, while the adsorption mechanism is elucidated in detail by Monte Carlo and density functional theory calculations. Due to the uniform pore with suitable size and abundant polarization groups, MIP-203-F can differentially polarize and recognize atomic Xe/Kr gases, and establishes a new record among zirconium–organic frameworks for the capture and separation of Xe/Kr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号