首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The effect of RE surface treatment on tensile strength and tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites was invest/gated. Experimental results revealed that RE was superior to air ox/dation in improving the tensile strength, elongation, and the tensile modulus of CF reinforced PTFE (CF/PTFE) composite. Compared to the untreated and air-oxidated CF/PTFE composite, the RE treated composite had the lowest friction coefficient and specific wear rate under a given applied load and reciprocating sliding frequency. The RE treatment effectively improved the interfacial adhesion between CF and PTFE. With strong interfacial coupling, the carbon fibers carried most of the load, and direct contact and adhesion between PTFE and the counterpart were reduced, accordingly the friction and wear properties of the composite were improved.  相似文献   

2.
A new type of Cu-La2O3 composite was fabricated by internal oxidation method using powder metallurgy.Sliding wear behavior of the Cu-La2O3 composite was studied on a pin-on-disc wear tester under various electrical currents and applied loads.The worn surfaces were characterized using scanning electron microscopy and energy dispersive spectroscopy to probe the wear mechanisms.The results indicated that applied load had a significant effect on the wear rate of the Cu-La2O3 composite pins.The wear rate displayed the minimum value at the load of 50 N during electrical sliding processes.The corresponding wear mechanism was identified to be adhesive wear,abrasive wear,oxidation wear and arc erosion.  相似文献   

3.
Effect of La_2O_3 on the wear behavior of MoSi_2 at high temperature   总被引:3,自引:0,他引:3  
Wear behaviors of MoSi2 doped with La2O3 against SiC under different loads at 1000 oC in air were investigated by using an XP-5 type high temperature friction and wear tester. The worn surfaces and phases of the samples were analyzed by scanning electron microscopy (SEM) and X-ray diffraction, respectively. Results showed that the addition of La2O3 could obviously improve wear resistance of MoSi2. Because of the formation of MoO3 phase on the worn surface, La2O3/MoSi2 composite mainly exhibited oxidation and abrasive wear, which was different from the wear form of MoSi2 such as adhesion, oxidation and abrasion.  相似文献   

4.
The tribological properties of the in-situ dendrite-reinforced metallic glass matrix composite (Ti42 Zr22 V1 4-Cu5 Be1 7 )prepared by copper mould casting were analyzed at different normal loads under the dry condition and rain-water.The results showed that the average value of the frictional coefficients and micro-hardness ascended with in-creasing the normal load,while the wear rate showed a trend of decline under the dry condition.The electrochemical test results showed that the surface of samples was pitting corroded in the rainwater.The matrices were corroded first.Then the dendrites were exposed,leading to the damage of the surface.Both the frictional coefficients and wear rate of the composite in the rainwater were larger than those under the dry condition,primarily owing to the corro-sion of chloride ions on the worn surface.The wear mechanisms of composites were mainly adhesive wear,accompa-nied by the abrasive wear under the dry condition and corrosive wear in the rainwater.The composites have higher wear resistance both under the dry condition and rainwater due to the lower wear rate.  相似文献   

5.
Dry Sliding Oxidative Wear in Plain Carbon Dual Phase Steel   总被引:1,自引:0,他引:1  
 To investigate the tribological potential of the dual phase (DP) steel as a wear resistant material, the wear and the friction characteristics of this steel, which consists of hard martensite islands embedded in a ductile ferrite matrix, have been investigated and compared with those observed in plain carbon hardened (H) steel that has the same carbon content of 02%. Dry sliding wear tests have been carried out using a pin on disk wear testing machine at different normal loads of 213 N, 285 N, 357 N, and 426 N and at a constant sliding velocity of 120 m/s. The analysis of surface and wear debris of samples showed that the wear mechanism was mainly mild oxidative. The friction and the wear rate of the H steel and the DP steel have been explained with respect to the microstructure and the wear mechanism.  相似文献   

6.
Carbon fibers (CFs) were surface treated with air-oxidation, rare earths (RE) after air-oxidation, and rare earths, respectively. Erichsen test was conducted to study the interfacial adhesion of PTFE composites filled with carbon fibers treated with different treatment methods. Tribological properties of the PTFE composites, sliding against GCr15 steel under water-lubricated condition, were investigated on a reciprocating ball-on-disk UMT-2MT tribometer. The worn surfaces of the composites were examined using scanning electron microscopy. Experimental results reveal that RE treatment is superior to air oxidation in promoting tribological properties of CF reinforced PTFE (CF/PTFE) composite. The friction and wear properties of PTFE composite filled with RE treated CF are the best of the PTFE composites. RE treatment is more effective than air oxidation to improve the tribological properties of CF/PTFE composite owing to the effective improvement of interfacial adhesion between carbon fibers and PTFE matrix.  相似文献   

7.
3-mercaptopropyl trimethoxysilane (MPTS) was prepared on glass substrate so as to form a two-dimensional self-assembled monolayer (SAM), and the terminal - SH group in the film was in situ oxidized to - SO3H group to confer good chemisorption ability to the film. Thus, lanthanum-based thin films were deposited on oxidized MPTS-SAM, making use of the chemisorption ability of -SOaH group. Atomic force microscopy (AFM) and X-ray photoelectron spectrometry (XPS) and contact angle measurements were used to characterize the thin films. The tribological properties of the as-prepared thin films sliding against a steel ball were evaluated on a friction and wear tester. Tribological experiment shows that the friction coefficient of glass substrate decreases from 0.8 to 0.08 after the rare earth (RE) self-assembled films (SAMs) are formed on its surface. And the RE self-assembled films have longer wear life (500 sliding passes). It is demonstrated that RE self-assembled film exhibits good wear-resistant property. The marked decrease in friction and the longer wear life of RE films are attributed to the excellent adhesion of the film to the substrate and to the special characteristics of the RE elements. The frictional behaviors of RE thin-films-coated silicon surface were sensitive to the applied load and the sliding velocity of the steel ball.  相似文献   

8.
The effect of rare earths (RE) surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil-lubricated condition was investigated. Experimental results revealed that RE treated CF reinforced PTFE (CF/PTFE) composite had the lowest friction coefficient and wear under various applied loads and sliding speeds compared with untreated and air-oxidated composites. X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that, after RE treatment, oxygen concentration increased obviously, and the amount of oxygen-containing groups on CF surfaces were largely increased. The increase in the amount of oxygen-containing groups enhanced interfacial adhesion between CF and PTFE matrix. With strong interfacial adhesion of the composite, stress could be effectively transmitted to carbon fibers; carbon fibers were strongly bonded with VITE matrix, and large scale rubbing-off of PTFE be prevented, therefore, tribological properties of the composite was improved.  相似文献   

9.
The effect of main alloying elements on thermal wear of cast hot-forging die steels was studied. The wear mechanism was discussed. The results show that alloying elements have significant influences on the thermal wear of cast hot-forging die steels. The wear rates decrease with an increase in chromium content from 3% to 4% and molybdenum content from 2% to 3%, respectively. With further increase of chromium and molybdenum contents, chromium slightly reduces the wear resistance and molybdenum severely deteriorates the wear resistance with high wear rate. Lower vanadium/carbon ratio (1.5-2.5) leads to a lower wear resistance with higher wear rate. With an increase in vanadium/carbon ratio, the wear resistance of the cast steel substantially increases. When vanadium/carbon ratio is 3, the wear rate reaches the lowest value. The predominant mechanism of thermal wear of cast hot-forging die steels are oxidation wear and fatigue delamination. The Fe2O3 and Fe3O4 or lumps of brittle wear debris are formed on the wear surface.  相似文献   

10.
 The Microstructure and room-temperature abrasive wear resistance of chromium carbide reinforced Ni3Al matrix composite cladding in different depth on nickel base alloy were investigated. The results showed that there is a great difference in microstructure and wear resistance of the Ni3Al matrix composite in different depth. Three kinds of tests, designed for different load and abrasive’ size, were utilized to understand the wear behaviour of this material. Under all three wear conditions, the abrasion resistance of the composite cladding in the depth of 6mm, namely NC-M2, was much higher than that of the composite cladding in the depth of 2mm, namely NC-M1. In addition, the wear-resistant advantage of NC-M2 was more obvious when the size of the abrasive was small. The relative wear resistance of NC-M2 increased from 1.63 times to 2.05 times when the size of the abrasive decreased from 180μm to 50μm. The microstructure of the composite cladding showed that the size of chromium carbide particles, which was mainly influenced by cooling rate of melting pool, as a function of distance from the interface between the coating and substrate was gradual. The chromium carbide particles near the interface were finer than that away from interface, which was the main reason for the different wear resistance of the composite cladding in different depth.  相似文献   

11.
The tribological properties of a centrifugally cast lead-free copper alloy (C90300), containing an average of 13 vol pct graphite particles (5 μm), have been studied. Friction tests were carried out at three different loads of 44, 88, and 176 N using a pin-on-disk testing method for the base copper alloy and the copper-graphite composite against a 1045 steel disk counterface. The friction coefficient, temperature rise, and weight loss of the pin and disk were measured. To understand the wear mechanism, the wear debris and the surfaces of the pin and the disk were analyzed before and after the tests, using scanning electron microscope (SEM) and energy-dispersive X-ray (EDX) analysis. The friction coefficient of the copper-graphite pins was lower than that of the base-alloy pins for all applied loads, which was attributed to the presence of the graphite in the matrix. It was also observed that the presence of graphite in the matrix reduces the transfer of iron from the counterface to the pins, but enhances the transfer of materials from the pins to the counterface. The temperature rise in the counterface running against the base-alloy pins was larger than the temperature rise in the counterface running against the copper-graphite pins, both tested under similar conditions. In addition, the effect of element transfer on the friction coefficient, variations in the weight of the pins and the counterface, as well as the surface roughness, are attributed to the formation of a graphitic tribolayer on the surface of the copper-graphite pins. An isostrain model predicting the friction coefficient of the composites is proposed, which agrees well with the measurements in the present article as well as with measurements made by other investigators.[10]  相似文献   

12.
The effect of main alloying elements on thermal wear of cast hotforging die steels was studied. The wear mechanism was discussed. The results show that alloying elements have significant influences on the thermal wear of cast hotforging die steels. The wear rates decrease with an increase in chromium content from 3% to 4% and molybdenum content from 2% to 3%, respectively. With further increase of chromium and molybdenum contents, chromium slightly reduces the wear resistance and molybdenum severely deteriorates the wear resistance with high wear rate. Lower vanadium/carbon ratio (15-25) leads to a lower wear resistance with higher wear rate. With an increase in vanadium/carbon ratio, the wear resistance of the cast steel substantially increases. When vanadium/carbon ratio is 3, the wear rate reaches the lowest value. The predominant mechanism of thermal wear of cast hotforging die steels are oxidation wear and fatigue delamination. The Fe2O3 and Fe3O4 or lumps of brittle wear debris are formed on the wear surface.  相似文献   

13.
 Abstract: To investigate the wear resistance of ZG42CrMo in industrial application, the wear behaviors under different normal loads, sliding speeds and ambient temperatures were simulated by an MMU-5G abrasion tester to acquire the friction coefficients and wear rates, with the morphology of worn surface observed by scanning electron microscopy (SEM) and chemical composition of worn surface and debris analyzed by X-ray energy dispersive spectroscopy (EDS). Combine with the theory of tribology, finally the regular of environmental factors′ influence on material wear behaviors is determined. The results show that the increase of load decreases wear resistance significantly, when the pressure reaches a certain extent, severe spalling occurs on the worn surface; the changes of speed result in the changes of size of abrasive debris, and then effect the wear behaviors, in the increasing process of speed, the wear rate increases firstly and then decreases; the rise of temperature causes changes in wear mechanism, bring forth oxidation film on the worn surface, which leads to significant improvement of the wear resistance of materials under high temperature compared to that under low temperature.  相似文献   

14.
Aluminum hard particle composites were synthesized by the solidification processing technique and the composite melt was solidified using gravity and pressure die castings. An aluminum-silicon alloy (A 332.1) has been used as the matrix and silicon carbide particles (quantity: 10 wt pct, and size: 50 to 80 μm) have been used as reinforcement for synthesis of the composite. The microstructure of the pressure die cast composite is found to be finer than those of the gravity cast ones. Additionally, the distribution of SiC particles in the Al alloy matrix is found to be more uniform in the pressure die-cast composites compared to the gravity die-cast ones. The mechanical properties such as ultimate tensile strength, hardness, and ductility are observed to be superior in the case of pressure die-cast composites compared to the gravity-cast one. The two-body abrasive wear resistance of the Al-composite is also noted to be greater in the pressure die-cast composite than in the gravity-cast one. The effects of injection pressure on the mechanical properties and wear resistance of the pressure die-cast composites are examined. It is observed that the wear resistance (inverse of wear rate), hardness, and strength of the Al-SiC composites increase with the increase in injection pressure during pressure die casting. This may be due to the finer microstructure, the absence of casting defects, and the stronger interfacial bonding between the matrix and hard dispersoid in pressure die-cast composites. The wear rate of the alloys and composites is studied as a function of their hardness, strength, and Young’s modulus. It is noted that the wear rate is primarily controlled by hardness even though other mechanical properties influence the wear behavior of the materials to some extent. An attempt is made to establish an empirical relation to correlate the wear rate of material with the mechanical properties such as hardness, ultimate tensile strength, and elongation.  相似文献   

15.
 Elevated-temperature wear tests under atmospheric conditions at 400 ℃ were performed for a hot working die steel H21 on a pin-on-disk wear tester. The phase and morphology of worn surfaces were examined using XRD and SEM, and the relation of wear resistance to tempered microstructures was studied for H21 steel. XRD patterns exhibit that oxidative wear is a predominated wear mechanism with Fe3O4 and Fe2O3 on worn surfaces. It is found that with increasing normal load, obvious plastic deformation of substrate appears on worn surfaces. Microstructures start to affect apparently wear resistance of the steel with an increase of load. Under loads of 50-100 N, wear losses of steel retain low values and relatively approach for steels with various microstructures. As loads are increased to 150-200 N, wear losses of steel start to increase obviously and present apparent difference for steel with various microstructures. Wear resistance is found to increase in the sequence as follows: tempered sorbite, tempered martensite, tempered troostite without secondary hardening and tempered troostite with secondary hardening or upcoming one. Higher strength and microstructural stability are required for steels with excellent wear resistance.  相似文献   

16.
Silane coupling reagent (3-mercaptopropyl trimethoxysilane (MPTS)) was prepared on silicon substrate to form two-dimensional Self-Assembled Monolayer (SAM) and the terminal -SH group in the film was in situ oxidized to -SO3H group to endow the film with good chemisorption ability. Thus, lanthanum-based thin films were deposited on oxidized MPTS-SAM to form rare earth composite thin films (RE thin films), making use of the chemisorption ability of the -SO3H group. Atomic Force Microscope (AFM), X-ray Photoelectron Spectrometry (XPS), and contact angle measurements were used to characterize the RE thin films. Adhesive force and friction force of the RE thin films and silicon substrate were measured under various applied normal loads and scanning speed of AFM tip. The results showed that the friction force increased with applied normal loads and scanning speed of AFM tip. To study the effect of capillary force, tests were performed in various relative humidities. The results showed that the adhesive force of silicon substrate increased with relative humidity and the adhesive force of RE thin films only increased slightly with relative humidity. Research showed that surfaces with higher hydrophobic property reveal lowered adhesive and friction forces.  相似文献   

17.
Thermal wear of cast hot-forging die steel modified by rare earths(RE) was studied and compared with commercially used die steels. The function of RE and the mechanism of thermal wear of cast steel modified by RE were discussed. The results showed that with increasing content of RE, the wear rate of cast steel reduced at first and then increased. By adding 0.05% (mass fraction) RE, the cast hot-forging die steel with optimum thermal wear resistance was obtained, which was better than that of H13 and 3Cr2WSV. The large amount of coarse inclusions, (RE)2O2S, resulted from excessive RE, which obviously deteriorated thermal wear resistance. The mechanism of thermal wear of the modified cast die steel is oxidation wear and oxide fatigue delamination. The wear debris are lumps of Fe2O3 and Fe3O4.  相似文献   

18.
In order to improve performance of semi-metallic friction material,the specimens doped with rare earth(cerous nitrate) were prepared.The effects of rare earth(cerous nitrate) and post heat treatment on properties of friction materials were discussed,and failure mechanism of friction materials was also analyzed.The result showed that the existing of cerous nitrate could stabilize friction coefficient,lower wear rate and increase impact strength,and when the content of the cerous nitrate was 3.0 wt.%,the semi-metallic friction material possessed optimal performances.The different post heat treatments had an influence on the friction coefficient,wear rate and linear thermal expansion coefficient of semi-metallic friction material.The worn surface and fractured surface were observed and analyzed by scanning electronic microscopy(SEM).It was identified that the semi-metallic friction materials doped with cerous nitrate acted abrasive wear and adhesive wear at the low temperature,and abrasive wear,adhesive wear and fatigue wear of materials appeared at the high temperature.The fracture of materials might be the result of matrix cracking interacting with interface separation.  相似文献   

19.
The friction and wear properties under impact load and dry friction conditions of metal-plastic multilayer composites fillde with glass fiber,treated with rare earth elements,were investigated,The worn surfaces were observed and analyzed by scanning electron microscopy(SEM).It shows that applying rare earth elements surface modifier to treat the glass fiber surface can enhance the interfacial adhesion between the glass fiber and polytetrafluoroethylene (PTFE),as well as promote the interface properties of the composites,This helps to form a uniflrmly distributed and high adhesive trandfer film on the counterface and abate the friction between the composite and the counterface,As a result,the wear of compostite is greatly reduced.The composite exhibits execllent friciton properties and impact wear-resistance.  相似文献   

20.
The abrasive wear behavior of high chromium cast iron(containing 12.9mass%chromium)austenitized at1 050 ℃for 2hand austempered in salt bath at 320℃for 4hwas evaluated.Abrasive wear was performed using alumina abrasive under four different loads,namely 50,100,150,and 200 N,for 36 000 cycles.The worn surfaces and wear debris were analyzed by scanning electron microscopy,laser confocal microscopy and X-ray diffraction.Microhardness profiles were also obtained in order to analyze the strain-hardening effects beneath the contact surfaces.Results indicate that the retained austenite in high chromium cast iron has experienced induced martensitic transformation after tests,for small amounts of retained austenite could be detected by X-ray diffraction.In addition,there is a close relationship between wear mechanism and test load.Under the condition of lower test load,the wear mechanism is an uninterrupted and repeated process,during which matrix is cut at first and then fine carbides flake off.As to higher test load,scratching and spalling induced by cleavage fracture of blocky carbide are the wear mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号