首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
二硼化钛(TiB2)作为金属硼化物中密度最小硬度最高的化合物,是重要的现代陶瓷材料之一。它不仅具有传统陶瓷材料所具备的高熔点、高硬度以及良好的化学稳定性,还具有传统陶瓷材料所不具备的优良导电性能。因此TiB2陶瓷不仅可以用于耐磨材料以及真空镀铝用蒸发舟材料,更是成为硬质刀具、电解铝惰性阴极以及空天飞行器热障防护等领域重要的防护涂层材料之一。本文结合国内外研究现状,重点介绍了TiB2陶瓷涂层的气相沉积法、电化学沉积法、热喷涂法、表面熔覆法、电火花沉积法和溶胶凝胶法等制备方法的特点及适用领域,总结了其在关键领域的重要应用,并对其未来的研究方向和发展前景进行了展望。  相似文献   

2.
The aim of this study is to investigate the metallurgical and mechanical properties of friction welded stainless steel-copper joints. One of the manufacturing methods used to produce parts made from different materials is the friction welding method. Application of classical welding techniques to such materials is difficult because of they have different thermal properties. Stainless steel-copper joints are inevitable for certain applications due to unique performances such as higher electric conductivity, heat conductivity, corrosion resistance, and mechanical properties. In the present study, austenitic stainless steel and copper parts were joined by friction welding. Tensile, fatigue, and notch-impact tests were applied to friction welded specimens, and the results were compared with those for the original materials. Microstructure, energy dispersive x-ray, and x-ray diffraction (XRD) analysis and hardness variations were conducted on the joints. Results showed that various intermetallic phases such as FeCu4 and Cu2NiZn occurred at the interface. It was found from the microstructure and XRD analysis that intermetallic phases formed in the interface which further caused a decrease in the strength of the joints. However, hardness of the copper increased slightly, whereas the hardness of steel decreases slightly on the horizontal distance from the center.  相似文献   

3.
Light alloys have been attracting increasing attention over the past decade, since they can be used to reduce weight and save energy. For many years, light metals such as titanium and aluminum have also been used to synthesize hard compound coatings such as physically vapor deposited (PVD) TiN, (Ti,Al)N, and chemically vapor deposited (CVD) Al2O3. The coatings field is developing rapidly. Combining plasma-aided coating and diffusion processes has led to the development of so-called “duplex treatment,” consisting of plasma nitriding and subsequent hard coating. Another interesting development is TiN coating of aluminum vacuum parts, such as pumps, to reduce degassing and make the cleaning of the surfaces easier. Despite the many advantageous properties of light alloys, their surface properties sometimes cause problems. For example, galling may be a severe problem with titanium parts, and plasma nitriding has been applied successfully to combat it. However, due to adherent oxide scale, plasma nitriding of aluminum has proven to be more difficult. In this paper, we discuss some recent trends in the application of plasma-aided coating, thin film deposition, and diffusion processes, and give practical examples of industrial applications.  相似文献   

4.
Thixoforging is a type of semi-solid metal processing at high solid fraction (0.7<?s<1), which involves the processing of alloys in the semi-solid state. Tooling has to be adapted to this particular process to benefit shear thinning and thixotropic behaviour of such semi-solid material. Tooling parameters, such as the forming speed and tool temperature, have to be accurately controlled because of their influence on thermal exchanges between material flow and tool. These thermal exchanges influence the high-cracking tendency and the rheology of the semi-solid material during forming, which affects parts properties and therefore their quality. Extrusion tests show how thermal exchanges influence quality of thixoforged parts made of 7075 aluminium alloys at high solid fraction by modifying process parameters like forming speed, tool temperature and tool thermal protector. Thus an optimum in terms of thermal exchanges has to be found between surface quality and mechanical properties of the part. A direct application is the evaluation of surface quality of thixoforged thin wall parts made of 7075 aluminium alloy.  相似文献   

5.
Laser aided direct metal/material deposition (DMD) process builds metallic parts layer-by-layer directly from the CAD representation. In general, the process uses powdered metal/materials fed into a melt-pool, creating fully dense parts. Success of this technology in the die and tool industry depends on the parts quality to be achieved. To obtain designed geometric dimensions and material properties, delicate control of the parameters such as laser power, spot diameter, traverse speed and powder mass flow rate is critical. In this paper, the dimensional and material characteristics of directed deposited H13 tool steel by CO2 laser are investigated for the DMD process with a feedback height control system. The relationships between DMD process variables and the product characteristics are analyzed using statistical techniques. The performance of the DMD process is examined with the material characteristics of hardness, porosity, microstructure, and composition.  相似文献   

6.
传统晶态材料构件或装备在低温环境中会出现可动部分卡死、龟裂、特性改变甚至脆性断裂等现象。低温极端条件如温度突变、高应变速率冲击等对材料性能带来的不利影响严重制约了其在低温极端环境领域的应用。块体非晶合金在低温条件下具有强度更高塑性更好的特殊性能,在极地科考以及航空航天等极端条件下具有极大的应用优势。本文以(Zr0.6336Cu0.1452Ni0.1012Al0.12)97Tm3块体非晶合金为研究对象,研究冷-热处理时间对块体非晶合金的结构、力学性能和腐蚀性能的影响。结果表明,当处理时间由30 min延长到90 min时,试样的晶化体积分数从2.3%增加到4.0%,屈服强度由1701 MPa增加到1810 MPa。在3.5 wt.% NaCl溶液中,合金具有较小的自腐蚀电流密度与较大的电化学阻抗,这意味着经冷-热处理后的块体非晶合金具有优异的耐腐蚀性能。本研究为块体非晶合金在低温极端环境领域的应用提供了强有力的理论支撑。  相似文献   

7.
Blue and purple gold alloys form in the alloying systems of gold with gallium/indium and aluminium respectively and are known to be very brittle and to possess low corrosion resistance. Taking into account these drawbacks this paper describes the results of a European funded research project. The properties of the blue and purple gold alloys and coatings such as corrosion resistance, metal release rates, hardness and colour and the influence of alloying additions on these properties are presented and discussed. Surface engineering techniques and investment casting were used for manufacturing of jewellery items with selectively coated coloured surface. Coatings of AuGa2 and AuIn2 blue gold alloys were applied on 18kt gold and Sterling silver jewellery by electroplating, laser/torch cladding or dipping into liquid gallium. The suitability of blue gold coatings for jewellery purposes will be discussed in the light of reliability and feasibility. The work consists of two parts. Part I describes properties and surface processing techniques while Part II deals with investment casting and related alloy design of coloured gold alloys.  相似文献   

8.
Tungsten coatings prepared by the method of deposition from a gas phase onto a graphite substrate have an elevated susceptibility to brittle fracture. In order to increase the ductility and decrease the critical brittleness temperatureT br of parts with such coatings they are subjected to annealing. The present paper studies the changes in the structure and the mechanical properties of coatings of gas-phase tungsten after annealing by various regimes in order to establish the optimum one. Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 6, pp. 22–24, June, 1997.  相似文献   

9.
The ability to measure the properties of thermal barrier coatings (TBCs) applied to engine components is challenging due to the complex geometry of parts and the difficulty of preparing samples suitable for conventional techniques. As a result, there is a shortage of information related to the morphology and thermal properties of coatings on engine components. Phase of photothermal emission analysis (PopTea) is a relatively new non-destructive technique that is suitable for measuring the thermal properties of coatings on serviceable engine parts. To demonstrate this capability, measurements are performed on an intact turbine blade coated with air plasma sprayed (APS) 7 wt.% Y2O3-stabilized ZrO2 (7YSZ). The average thermal diffusivity of the coating applied to the blade was ~ 0.5 mm2/s which is typical for thermal diffusivity previously measured on 7YSZ APS coatings made on test coupons with PopTea and laser flash. Furthermore, trends in thermal properties over the blade are studied and compared. It is discovered that variations in thermal properties are the result of differences in coating porosity.  相似文献   

10.
This review summarizes the present-day achievements in the study of the structure and properties of protective nanocomposite coatings based on NbN, NbAlN, and NbSiN prepared by a variety of modern deposition techniques. It is shown that a change in deposition parameters has a significant effect on the phase composition of the coatings. Depending on the magnitude of negative potential on the substrate, the pressure of nitrogen or a nitrogen–argon mixture in the chamber, and the substrate temperature, it is possible to obtain coatings containing different phases, such as NbN and SiNx (Si3N4), AlN, and NbAl2N. It is found that, in the case of formation of the ε-NbN phase, the coatings become very hard; their hardness achieves values on the order of 53 GPa. At the same time, they remain thermally stable at temperatures of up to 600°C, chemically inert, and resistant to wear. The effect of the nanograin size, the volume fraction of boundaries and interfaces, and the point defect concentration on the physicomechanical properties of these coatings is described. Niobium nitride-based coatings can be used in superconducting systems and single-photon detectors; they are capable of operating under the action of strong magnetic fields of up to 20 T; they can be used in integrated logic circuits and applied as protective coatings of machine parts, edges of cutting tools, etc.  相似文献   

11.
Alumina-containing titanium-carbonitride nickel composites (Al2O3-TiCN-Ni-Mo2C) have been synthesized with up to 20 vol.% alumina particles and nickel contents of 10–15 vol.%. Alumina in the form of platelets as well as powders have been successfully incorporated into the composites. The mechanical properties of these composites show a marked increase in toughness while retaining a good hardness and a low density when compared to TiCN-Ni cemented carbides. The presence of alumina with its superior chemical and wear resistance makes these composites very attractive for all wear parts—particularly for pieces exposed to chemically aggressive environments and high-temperature applications. Moreover, the complementary properties of these new composites (e.g., light weight, hardness, toughness, and chemical stability) allow a wide range of applications to be envisaged.  相似文献   

12.
Bulk yttrium monosilicate (Y2SiO5) possesses interesting properties, such as low thermal expansion coefficient and stability in water vapor atmospheres, which make it a promising protective layer for SiC-based composites, intended for the hottest parts in the future gas turbines. Because protective layers are commonly applied by thermal spraying techniques, it is important to analyze the changes in structure and properties that these methods may produce in yttrium silicate coatings. In this work, two SiO2-Y2O3 compositions were flame sprayed in the form of coatings and beads. In parallel, the beads were spark plasma sintered at relatively low temperature to obtain partially amorphous bulk specimens that are used as model bulk material. The thermal aging—air and water vapor atmosphere—caused extensive nucleation of Y2SiO5 and Y2Si2O7 in both the bulk and coating. The rich water vapor condition caused the selective volatilization of SiO2 from Y2Si2O7 at the specimen surface leaving a very characteristic micro-ridged Y2SiO5 zones—either in coatings or sintered bodies. An important increase in the thermal conductivity of the aged materials was measured. The results of this work may be used as a reference body for the production of Y2SiO5 coatings using thermal spraying techniques.  相似文献   

13.
In order to characterize the interfacial behavior of brazed joints and offer theoretical basis for the applications of TiZrCuNi-based composite fillers, Cf/SiC composite and TC4 were brazed by TiZrCuNi filler, and the microstructures of joints versus temperature and versus holding time were systematically studied in this paper. The mechanical properties of brazed joints were measured and analyzed. The results showed that Ti(Zr)C, Ti5Si3, Ti2Cu, TiNi, TiZrCu2, Ti2(Cu,Ni) and Ti(s,s) were the predominant compounds in the joints. Brazing temperature had a distinct effect on the microstructures of joints: with the increase of brazing temperature, the structure of brazed joints was reduced from four parts to three parts, and the wavy reaction layer became continuous and much thicker. While holding time had a similar but weaker effect on microstructures: with the extension of holding time, the reaction layer became thicker, but it was difficult to induce the decrease in the structural parts of joint. The thickness of reaction layer determined the mechanical properties of joints. The results were beneficial for the selection of reinforced phases and the design of composite fillers to obtain better mechanical performances. When the brazing temperature was 940 °C and the holding time was 25 min, the maximum shear strength of brazed joints attained a value of 143.2 MPa.  相似文献   

14.
Processing-induced residual stresses play an important role in the production and performance of thermally sprayed coatings. Their precise determination is a key to influence the coating properties by modification of process variables and to understand the processing-structure-property relationship. Among various methods for residual stress measurement, x-ray diffraction holds a specific position as being non-destructive, phase distinctive, localized, and applicable for real parts. The sin2 ω methods is commonly applied for bulk materials as well as coatings. However, the results are often reported without sufficient experimental details and the method is used in its simplified form without justification of certain assumptions. In this investigation, the sin2 ω x-ray diffraction method was used to measure residual macrostress in plasma sprayed metallic (nickel, NiCrAlY, and molybdenum) and ceramic (ZrO2 + 8% Y2O3) coatings. Reproducibility of the method was tested and the assumptions allowing its use are discussed and experimentally verified. For nickel coatings, a comparison with hole drilling and neutron diffraction measurements is presented. The influence of processing factors such as deposition temperature and coating thickness is studied and the results are discussed.  相似文献   

15.
Abstract

The effects of TiC additions on the as cast and heat treated microstructures and mechanical properties of ZA84 Mg alloy are investigated. The results indicate that, after adding 0·5 wt-%TiC to ZA84 alloy, the as cast microstructure of the alloy is refined. At the same time, the distribution of second phases in the alloy becomes relatively uniform and the quasi-continuous networked second phases in the alloy become discontinuous. As a result, the as cast tensile properties of the alloy are improved. In addition, after solutionisation at 345°C, parts of the Mg32(Al,Zn)49 phases in the ZA84 alloy without TiC modification still exhibit quasi-continuous distribution. The Mg32(Al,Zn)49 phases in the ZA84 alloy treated with 0·5 wt-%TiC change to disconnected particles with an angular morphology and gradually spheroidise. Under the optimum heat treated conditions, the ZA84 alloy treated with 0·5 wt-%TiC exhibits higher heat treated tensile properties than the ZA84 alloy without TiC modification.  相似文献   

16.
Selective Laser Melting (SLM) was used to process a powder mixture of CP Ti, 6.5 wt% Mo and 3.5 wt% Mo2C. The process parameters were optimized to obtain full-density, crack free parts. After the in situ decomposition of Mo2C in favor of the formation of TiC, the material consisted of a homogeneous dispersion of submicrometer sized TiC platelets in a β-(Ti,Mo) matrix exhibiting a high hardness up to 550 HV and compressive yield stress of 1164 ± 37 MPa. The microstructure and mechanical properties could be tailored by variation of the process parameters within the high-density processing window, as well as through post-process heat treatments.  相似文献   

17.
5083合金挤压铸造工艺的研究   总被引:1,自引:1,他引:0  
以5083合金为原材料进行挤压铸造工艺试验.采用正交试验和极差分析法确定了最佳工艺条件--比压为125MPa,浇注温度为670℃,保压时间为15s.对该工艺条件下试样的微观组织和力学性能进行了分析.结果表明,与普通铸造成形制件相比,挤压铸造成形制件微观组织更加细小、均匀,综合力学性能显著提高,达到或者接近了原热模锻工艺水平.  相似文献   

18.
Rapid prototyping (RP), especially metal direct rapid prototyping, brings engineers a new model to fabricate parts more difficultly than conventional machining. Furthermore, the surface quality and the dimensional accuracy of the parts manufactured using the simplex metal direct prototyping or tooling approach are even lower than that of the conventionally machined parts. To overcome these deficiencies, this paper presents a new metal direct RP approach, called hybrid plasma deposition and milling (HPDM) using plasma deposition as an additive and conventional milling as a subtractive technique, which synthesizes the advantages of both processes. Compared with other metal-deposition ways, such as laser or electron beam deposition processes, the plasma deposition used in the current HPDM is the most economical one. Simultaneously, the precision of the manufactured parts is ensured by the compounding CNC process which assists to remove the staircase caused by the layered manufacturing principle and the allowance of the near-net shape deposited by plasma deposition. The initial results of the process development and the characteristics of the parts fabricated by this process are reported in this paper. Using a set of optimized process parameters obtained in this study, a group of metal parts, such as metal hollow vases, were trial-manufactured. The surface roughness Rz was obtained 2.32 μm and the dimensional accuracy was controlled within ±0.05% of the metal part. With these results obtained, the microstructure was then examined to prove the applicability of the HPDM process to direct fabrication of metallic prototypes and tools.  相似文献   

19.
Laser-cladding process is one of the most relevant new processes in the industry due to the particular properties of the processed parts. The main users of this process are aeronautical turbine parts manufacturers and engineering maintenance services. The main advantage of laser-cladding process is the possibility of obtaining high quality material deposition on complex parts. Thus, laser cladding can be applied in the repair of high added-value and safety critical parts. This ability is especially useful for high-cost parts that present wears or local damage due to operating conditions. Different types of parts can be processed, such as housings, blades or even complete turbine rotors. Once the parts are repaired by laser cladding, they can be reassembled on the engine, reducing lead times. Laser-cladding process can permit buildup of complex geometries on previously forged or machined parts, such as stubs or flanges.However, one of the main drawbacks of the laser-cladding process currently is lack of knowledge on the properties of the deposited material. Most of the available data relate to the microstructure and the final hardness values. Nevertheless, there are few data of the mechanical properties of the parts. Moreover, it is difficult to gather data related to the influence of the laser-cladding parameters and strategies on the mechanical behaviour of a part.This paper presents the mechanical properties of a series of samples builtup by laser cladding. Two different types of specimens are tested: first, hybrid parts, in which laser cladding deposits materials built up layer-by-layer onto a substrate and the resulting part is a combination of deposited material and the substrate and second, complete rapid manufactured test samples. The results of tensile tests on various parts show that the laser-cladding strategy has a significant influence on their stress-strain curves. In addition, the laser-cladding process can result in a high directionality of their mechanical properties. The direction depends on the particular strategy in use. The study demonstrates that these properties present high anisotropy, a factor that should be carefully considered when selecting the most appropriate laser-cladding strategy.  相似文献   

20.
用金属注射成型方法研究三种热塑性蜡基粘接剂(高密度聚乙烯、高密度聚乙烯/聚丙烯、聚丙烯)对316L不锈钢尺寸稳定性及其机械性能的影响,对三种热塑性蜡基粘接剂溶剂脱脂过程进行了分析。实验结果表明用高密度聚乙烯/聚丙烯热塑性蜡基粘接剂得到的316L不锈钢注射成型件尺寸稳定性及机械性能较好,溶剂脱脂时间较短、效果较好,其长、宽、高三维尺寸稳定性比聚丙烯热塑性蜡基粘接剂得到的注射成型件分别高46 %,40 %,20 %,密度、硬度和拉伸强度分别为7.28 g/cm3、72.3 HRB和579MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号