首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite increasing knowledge about the biophysiology of the human olfactory system, understanding of the development of this pathway in humans lags considerably behind that of other vertebrates. Developmental studies have largely concentrated on the generation of cell types in the olfactory epithelium during the first trimester, while detailed ultrastructural observations usually describe the adult morphology. In this review, we have shown that contrary to what has been generally assumed, the surface of the human olfactory epithelium is heterogeneous and that its olfactory nerves differ ultrastructurally from those of other vertebrates studied. The development of the human primary olfactory pathway is discussed in terms of the appearance of olfactory bulb laminae, synaptogenesis and the expression of specific cell markers, such as the S-100 protein and olfactory marker protein (OMP). Positive immunohistochemical staining for N-cadherin in human fetuses suggests that growth of olfactory axons to their target may be mediated by cell adhesion molecules. The overall data presented here indicate that this pathway develops more precociously in humans than in rodents. Whether this translates also to earlier functional maturity remains to be elucidated.  相似文献   

2.
Structural features of various types of olfactory sensilla are reviewed. 1) Sensilla basiconica which differ in form and size are found on the antennae of centipedes and millipedes. Their walls show longitudinal slits or grooves that either open into the sensillum lumen or do not penetrate the cuticle. In other such sensilla the outer surface is pierced by pores and the inner surface grooved and pocketed. These sensilla are innervated by one to six sensory cells. Their unbranched outer dendritic segments extend to the tip of the sensillum. The sensory cells are surrounded by two or three sheath cells which terminate at the sensillum base or form a continuous tube around the entire length of the outer dendritic segments. 2) Temporal organs of centipedes are located between the insertion of the antenna and the ocelli. These sensilla consist of a shallow cuticular ring with a central sensory plate made up by a layer of unperforated cuticle or a capsule with a mushroom-shaped structure inside formed by fibrous-looking cuticle. A dozen sensory cells with unbranched outer dendritic segments innervate each sensillum. They extend toward the sensory cuticle and pass just below it. Numerous sheath cell processes run parallel to the outer dendritic segments up to the sensory cuticle. 3) Thread-like flagella of Pauropoda are found on the antennae. They possess a flexible unperforated cuticular wall. These sensilla contain nine sensory cells surrounded by several sheath cells which form a continuous cytoplasmic tube around the outer dendritic segments. 4) Single-walled sensilla with numerous plugged pores penetrating the cuticular wall occur on the tarsus of the first leg in ticks. Each sensillum is innervated by 4-15 sensory cells. Three sheath cells terminate in the base of the sensillum. 5) Double-walled sensilla with spoke canals are found on the first tarsus of ticks. Their shaft is longitudinally grooved. Pore canals lead inward from the bottom of the grooves and open into vase-shaped chambers. From its base these canals extend into the lumen of the sensillum which contains unbranched outer dendritic segments of 1-2 sensory cells. 6) Single-walled sensilla with pore openings occur on the distal tarsal segments of the first leg of whip spiders. These sensilla are innervated by 40-45 sensory cells. Their unbranched outer dendritic segments fill the shaft lumen and extend partly into the wall pores. Microvillus-shaped sheath cell processes line the inner surface of the cuticular wall.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The mammalian pineal gland is innervated by peripheral sympathetic and parasympathetic nerve fibers as well as by nerve fibers originating in the central nervous system (central innervation). The perikarya of the sympathetic fibers are located in the superior cervical ganglia, while the fibers terminate in boutons containing small granular vesicles and a few large granular vesicles. Both noradrenaline and neuropeptide Y are contained in these neurons. The parasympathetic fibers originate from perikarya in the pterygopalatine ganglia. The neuropeptides, vasoactive intestinal peptide and peptide histidine isoleucine, are present in these fibers, the boutons of which contain small clear transmitter vesicles and larger granular vesicles. The fibers of the central innervation originate predominantly from perikarya located in hypothalamic and limbic forebrain structures as well as from perikarya in the optic system. These fibers terminate in boutons containing small clear and, in certain fibers, an abundant number of large granular vesicles. In rodents, the majority of the central fibers terminate in the deep pineal gland and the pineal stalk. From these areas impulses might be transmitted further caudally to the superficial pineal gland via neuronal structures or processes from pinealocytes. Several hypothalamic neuropeptides and monoamines might be contained in the central fibers. The intrapineal nerve fibers are located both in the perivascular spaces and intraparenchymally. The majority of the intraparenchymally located fibers terminate freely between the pinealocytes. However, some nerve terminals make synaptic contacts with the pinealocytes and in some species with intrapineal neurons. In fetal mammals, sympathetic, parasympathetic, and central fibers are also present. In addition, an unpaired nerve, connecting the caudal part of the pineal gland with the extreme rostral part of the mesencephalon, is present. This nerve is a homologue to the pineal nerve (nervus pinealis) observed in lower vertebrates.  相似文献   

4.
Among gastropod molluscs the chemical senses are most important for location of distant objects. They are used in food finding, locating mates, avoiding predators, trail following, and homing. Chemoreceptors are commonly associated with the oral area, the tentacles, and the osphradium, which lies in the mantle cavity. Most chemosensory neurons are primary sensory neurons, although secondary sensory cells have been reported in the osphradium of some prosobranch gastropods. Most chemosensory organs contain sensory cells with ciliated sensory endings that are in contact with the external environment. Some sensory endings have only microvilli or have no surface elaborations. Cilia on sensory endings are commonly of the conventional type, but some species have modified cilia; some lack rootlets, some have an abnormal microtubular content, and some have paddle-shaped endings. The perikarya of sensory neurons may be within the sensory epithelium, below it, or in ganglia near the sensory surface. In some groups of gastropods there are peripheral ganglia in the olfactory pathway; in others chemosensory axons appear to pass directly to the CNS. Olfactory epithelia of terrestrial pulmonates have modified brush borders with long branching plasmatic processes and a spongy layer of cytoplasmic tubules which extend from the epithelial cells. Sensory endings of the olfactory receptors are entirely within this spongy layer. Aquatic pulmonates may have a similar spongy layer in their olfactory epithelia, but the cilia of sensory endings, as well as motile cilia of epithelial cells, extend well beyond the spongy layer.  相似文献   

5.
The vomeronasal and septal olfactory organs are two neurosensory structures in the mammalian nasal septum which are poorly understood relative to the main olfactory system. The vomeronasal organ is a paired, blind-ending tubular structure that opens rostrally into the nasal cavity in some species and into the incisive ducts in others. When present in mammals, the septal olfactory organ is an island of olfactory mucosa positioned such that it is in the primary air pathway in the caudal portion of the nasal cavity. Mammalian nasal glands, with a diverse histochemical and ultrastructural morphology, secrete a variety of substances onto the mucosal surface. One of these substances, odorant binding protein, localized in bovine nasal glands and lateral nasal glands of rodents, may be important in the capture and conveyance of odorant molecules to olfactory receptors. The objectives of this paper are to present original data while reviewing the literature on the ultrastructure of vomeronasal and septal olfactory neuroepithelia, and of vomeronasal, bovine nasal, and lateral nasal glands. Nasal tissues from pigs, calves, and hamsters were prepared for electron microscopy. Neurosensory epithelia of the porcine vomeronasal organ and the hamster septal olfactory organ are similar to that described for the vomeronasal and septal olfactory organs of other mammals. Bovine nasal and rodent lateral nasal glands consist of subregions which differ morphologically; the most abundant acinar cell type in the bovine nasal gland contains lightly electron dense secretory granules while that of the rodent lateral nasal gland contains both small electron dense and large, electron lucent granules. The porcine vomeronasal gland contains numerous small, dense granules of a diverse morphology.  相似文献   

6.
This paper describes four investigations of the olfactory mucosa of the brown trout: 1) the ultrastructure of the olfactory mucosa as revealed by scanning (SEM), conventional transmission (TEM), and high voltage (HVEM) electron microscopy; 2) light and electron-microscopic investigations of retrograde transport of the tracer macromolecule horseradish peroxidase (HRP) when applied to the cut olfactory nerve; 3) SEM and TEM investigations of the effects of olfactory nerve transection on cell populations within the olfactory epithelium; and 4) ultrastructural investigations of reversible degeneration of olfactory receptors caused by elevated copper concentrations. The trout olfactory epithelium contains five cell types: ciliated epithelial cells, ciliated olfactory receptor cells, microvillar olfactory receptor cells, supporting cells, and basal cells. The ciliated and microvillar olfactory receptor cells and a small number of basal cells are backfilled by HRP when the tracer is applied to the cut olfactory nerve. When the olfactory nerve is cut, both ciliated and microvillar olfactory receptor cells degenerate within 2 days and are morphologically intact again within 8 days. When wild trout are taken from their native stream and placed in tanks with elevated copper concentrations, ciliated and microvillar cells degenerate. Replacement of these trout into their stream of origin is followed by morphologic restoration of both types of olfactory receptor cells. Ciliated and microvillar receptor cells are primary sensory bipolar neurons whose dendrites make contact with the environment; their axons travel directly to the brain. Consequently, substances can be transported directly from the environment into the brain via these "naked neurons." Since fish cannot escape from the water in which they swim, and since that water may occasionally contain brain-toxic substances, the ability to close off--and later reopen--this anatomic gateway to the brain would confer a tremendous selective advantage upon animals that evolved the "brain-sparing" capacity to do so. Consequently, the unique regenerative powers of vertebrate olfactory receptor neurons may have their evolutionary origin in fishes.  相似文献   

7.
The present review deals with the use of electron microscopy in the identification of pituitary cell types as well as the assessment of their functional state, in rat and man. Application of immunoelectron microscopy, especially immunogold techniques, utilizing multiple labeling in establishing differentiation and hormone content of cell types, is emphasized. Recent evidence of plurihormonality in various pituitary cell types indicates that the once axiomatic one cell-one hormone theory is untenable and that the present perception of pituitary cell types and their function requires modification. Detection of hormonal and nonhormonal substances in pituitary cell types, not associated with their known endocrine function, suggests that hypophysial cells may have yet unknown roles, possibly in the realm of paracrine and autocrine regulation.  相似文献   

8.
The olfactory organ of the silkmoth Antheraea polyphemus is the feathered antenna which carries about 70,000 olfactory sensilla in the male. It develops within 3 weeks from a leaf-shaped epidermal sac by means of segmental primary and secondary indentations which proceed from the periphery towards the centerline. During the first day post-apolysis, the antennal epidermis differentiates into segmentally arranged, alternating sensillogenic and non-sensillogenic regions. Within the first 2 days post-apolysis, the anlagen of olfactory sensilla arise from electron-dense mother cells in the sensillogenic epidermis. The axons of the developing sensilla begin to form the primary innervation pattern during the second day. The sensilla develop approximately within the first 10 days to their final shape, while the indentations are completed during the same period of time. The indentations are most probably driven by long basal extensions of epidermal cells, the epidermal feet. Primary indentations follow the course of segmentally arranged tracheal bundles and form the segments of the antenna. The secondary indentations follow the course of the primary segmental nerves which are reconstructed by this process. During the remaining time of development, the cuticle of the antenna and the sensory hairs is secreted by the epidermal and the hair-forming cells.  相似文献   

9.
10.
The structure of the aesthetascs has been investigated in the prawn Macrobrachium rosenbergii (larvae and juveniles), the opossum shrimp Neomysis integer, the euphausid Meganyctiphanes, and in the water-fleas Daphnia magna and D. longispina. The aesthetascs, that are thought to represent olfactory receptors, exhibit a considerable structural variation, ranging from the well known aesthetascs of higher crustaceans (lobster, crab, crayfish) to the corresponding sensilla found in the water-fleas and the males of opossum shrimps. The two following morphological characteristics of the aesthetascs are thought to indicate an olfactory function: the shape of the cuticular hair that is long and essentially hose-shaped, and the thin, loosely arranged cuticle of at least the outer part of the cuticular hair. The presence of other structural elements such as sensory cells, cilia, and enveloping cells are vital for the olfactory function, but the development is variable, which makes their use in the morphological definition of aesthetascs problematic.  相似文献   

11.
Supraspinal connections of the ovary: structural and functional aspects   总被引:1,自引:0,他引:1  
This review summarizes our recent studies using the viral transneuronal tracing technique to identify sites in the central nervous system (CNS) that are connected with the ovary. A neurotropic virus (pseudorabies virus) was injected into the ovary and various times after the inoculation the spinal cord and brain were examined for virus-infected neurons identified by immunocytochemistry. Such neurons could be detected in well-defined cell groups of the spinal cord (intermediolateral cell column), brain stem (vagal nuclei, area postrema, parapyramidal nucleus, caudal raphe nuclei, A1, A5, A7 noradrenergic cell groups, locus coeruleus, Barrington's nucleus, periaqueductal gray), hypothalamus (paraventricular nucleus, anterior hypothalamus, arcuate nucleus, zona incerta), and, at longer survival time, in some telencephalic structures (amygdala, bed nucleus of the stria terminalis). These findings provided the first neuromorphological evidence for the existence of a multisynaptic neuronal pathway between the brain and the ovary presumably involved in the neuronal control of the organ. The observations indicate that there is a significant overlap of CNS structures connected with the ovary, the testis, other organs and organ systems, suggesting similar neuronal circuitries of the autonomic nervous system innervating the different organs. The known descending neuronal connections between the CNS structures labeled from the ovary by the viral transneuronal tracing technique and the findings suggesting a pituitary independent interplay between certain cerebral structures such as the hypothalamus, the amygdala, and the ovary are also summarized in this review.  相似文献   

12.
Up to now, the cause of most types of headaches is unknown. Why headache starts or why it fades away during hours or a few days is still a mystery. This phenomenon makes headache unique compared to other pain states. For long it has been known that during headache sensory structures in the meninges are activated. But it was not until the last two decades that scientists investigated the physiology of the sensory innervation of the meninges. Animal models and in vitro preparations have been developed to get access to the meninges and to determine the response properties of meningeal afferents. Although animals hardly can tell their pain, blood pressure measurements and observations of behaviour in two models of headache suggest that such animal models are valid and may add remarkable information to our understanding of human headache. Since chemicals and endogenous inflammatory mediators may alter sensory thresholds and responsiveness of neurons, they are putative key molecules in triggering pathophysiological sensory processing. This review briefly summarizes what is known about the chemosensitivity of meningeal innervation.  相似文献   

13.
This paper presents morphological (light- and electron-microscopical) evidence for the role of the mesonephros in contributing cells to the differentiating indifferent gonad and, after sexual differentiation, to the testis. A continuous process is revealed during which segregation of cells occurs from the developing and regressing mesonephros. Additionally, the complementary role of the coelomic epithelium in gonadal ridge and testis formation is demonstrated. The differentiation of testicular cords, their remodelling from a primary reticulum, and the composition and further change of the cellular content during the period after sexual differentiation is described using a computer-aided three-dimensional reconstruction system. Apart from these morphogenetic events, cytodifferentiation in the somatic cells of the indifferent gonad and of the early differentiated testis is demonstrated using indirect immunof luorescence in combination with monoclonal antibodies to the intermediate filament proteins keratin 8 and 18 and vimentin. The immunohistochemical results show that different forms of cytodifferentiation coexist among the somatic cells present in the indifferent gonad and in the testis early after sexual differentiation.  相似文献   

14.
15.
This review article focuses on the ontogeny and the regulatory mechanisms involved in the modulation of the intracellular events governing the assembly and delivery of lipoproteins in human gut. The human fetal intestine organizes villi covered with well-differentiated enterocytes during the end of the first trimester in utero. One striking event is the formation of villi in the colonic mucosa similar to those of the small intestine. The small intestine exhibits very early (14-20 weeks) the capacity to absorb lipids, to elaborate most of the major lipoprotein classes (chylomicrons, very-low-density lipoproteins, low-density lipoproteins, high-density lipoproteins), and to efficiently export these lipoproteins from the intestinal cells. The ontogenic changes of lipid and lipoprotein synthesis are correlated with specific patterns of regulatory enzymes (HMG-CoA reductase, ACAT, MGAT) that are representative of key patterns such as the cholesterol pathway, cholesterol esterification, and neutral lipid pathway. The human fetal colon also has the capability to synthesize lipids, lipoproteins, and apolipoproteins. However, comapred with the small intestine, it is much less efficient at exporting these lipoproteins. Epidermal growth factor, insulin, and hydrocortisone, which are known modulators of the brush border digestive functions of the human gut, differentially modulate the synthesis and secretion of lipoproteins in the small intestine and colon. The use of human fetal gut represents a unique model to further our understanding of the complex biosynthetic molecular events essential for the formation and secretion of lipoproteins relevant to human intestine, both in normal or pathological conditions.  相似文献   

16.
The aim of this study is to describe the ultrastructure of the hepatopancreas of P. argentinus in intermoult. P. argentinus hepatopancreas was studied using standard TEM techniques. Each tubule consists of four cellular types: E (embryonic), F (fibrillar), R (resorptive) and B (blister like). E-cells have embryonic features and some of them were found in mitosis. F, R and B cells possess an apical brush border. F-cells have a central or basal nucleus, a conspicuous RER, and dilated Golgi cisternae. R cells show a polar organization of organelles in three areas: apical, with numerous mitochondria and sER tubules, a central area with the nucleus and RER, and a basal area containing a sER-like tubule system and mitochondria. B-cells were observed at different stages of their life cycle. In an early differentiation stage they comprise an apical endocytotic complex and Golgi vesicles. The fusion of endocytotic and Golgi vesicles originates subapical vacuoles. During maturation, a big central vacuole is formed by coalescence of subapical vacuoles. The central vacuole is eliminated by holocrine secretion. The ultrastructure suggests that F-cells synthesize proteins, R-cells storage nutrients and B-cells have a secretory or excretory function, and confirms the independent origin of F, B and R cells from the embryonic cells.  相似文献   

17.
We used scanning (SEM) and transmission (TEM) electron microscopy to examine ultrastructural changes in the olfactory epithelium (OE) of rainbow trout following unilateral olfactory nerve section. Both ciliated receptor cells (CRC) and microvillar receptor cells (MRC) degenerated and subsequently differentiated from unidentified precursor cells. The following changes took place in fish that were held at 10 degrees C at the stated period following olfactory nerve section: on day 7, MRC and CRC contained intracellular vacuoles; on day 12, the olfactory knobs appeared disrupted; by day 26, olfactory receptor cells were absent from the OE; on day 42, there were receptor cell bodies and a few CRC with short cilia at the apical surface; and on day 55, a small number of both CRC and MRC had differentiated. By day 76, both CRC and MRC repopulated the OE. Degenerative changes in the cytoplasm of the sustentacular cells (SC) and ciliated nonsensory cells (CNC) were observed in the first 26 days following olfactory nerve section, but these cells remained intact throughout the experiment. The degeneration and subsequent differentiation of CRC and MRC supports and extends previous observations that both cell types are olfactory receptor neurons with axons that extend along the olfactory nerve to the olfactory bulb.  相似文献   

18.
Morphology of olfactory epithelium in humans and other vertebrates.   总被引:4,自引:0,他引:4  
Human olfactory epithelium is similar in organization and cell morphology to that of most vertebrate species. The epithelium has a pseudostratified columnar organization and consists of olfactory neurons, supporting and basal cells. Near the mucosal surface there are also microvillar cells. These cells have neuron-like features and may be chemoreceptors. Human olfactory epithelium is not a uniform sensory sheet. Patches of non-sensory tissue often appear in what was thought to be a purely olfactory region. The significance of these patches has not been determined, but they could reflect exposure to environment agents or changes that occur during the normal aging process. In order to better understand the human olfactory system, further knowledge of the normal structure is necessary. This review addresses the morphology of the human olfactory epithelium and the remarkable plasticity of the vertebrate olfactory system.  相似文献   

19.
The involvement of neural components in plasma extravasation and blood flow in the dental pulp has been established by pharmacological and physiological studies. We review here the segmental constitution of pulp vessels and the possible involvement of neural components in both the contractility and permeability of the pulp vessels from a morphological viewpoint. Six vascular segments can be identified based on the morphology of peri-endothelial cells, such as smooth muscle cells and pericytes. These are: muscular arterioles, terminal arterioles, precapillary arterioles, capillaries, postcapillary venules, and collecting or muscular venules. The perivascular nerve forms a mesh with numerous terminal varicosities, some of which attach directly to arteriolar smooth muscle cells. This mesh can be seen by scanning electron microscopy, and indicates the important role of neural components in regulating the pulpal circulation. After administering norepinephrine (0.2 mg/kg/dog), the surface texture of the smooth muscle cells of pulp arterioles reveals marked irregularities, which are correlated with arteriolar contraction. The pericytes in larger postcapillary venules (diameter 20 microm or larger) also show irregularities, whereas no changes are seen in the pericytes of either smaller postcapillary venules or capillaries. The intercellular spaces of pericytes in the postcapillary venules are wide enough for leukocytes to pass through, and the occasional extravasation of leukocytes through venule walls can be seen under electron microscopy. The microvessels of healthy human dental pulp react weakly to selectins, indicating that apparently healthy dental pulp may be weakly inflamed. In rat dental pulp, CGRP-immunoreactive nerves and nerve terminals containing many granular vesicles supply the postcapillary venules more densely than the arterioles, which suggests the involvement of postcapillary venules in neurogenic inflammation in the dental pulp.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号