首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
以顶层加速度作为概率特征量,建立目标函数,分别采用基于随机等效线性化系统的频域方法和基于概率密度演化理论的非线性系统时域方法,进行了考虑结构参数随机性的高层建筑风振舒适度控制的黏滞阻尼器优化布设研究。结果表明:在总黏滞阻尼器系数相同的条件下,以顶层加速度标准差和失效概率为目标函数的黏滞阻尼器优化布设方案,在确定性激励作用下均能显著降低结构的风振响应,且相对于未优化的阻尼器均匀满布方案更经济、更有效。以加速度标准差为目标函数的传统阻尼器优化布设本质上是确定性分析方法,对结构可靠度的提高作用有限,而以加速度失效概率为目标函数的阻尼器优化布设,以结构响应的概率密度函数为优化对象,能显著地提高结构的可靠度,有利于改善高层建筑结构的风振舒适度性能。  相似文献   

2.
High‐hardness viscoelastic rubber dampers are used to upgrade both the habitability environment and the structural safety in high‐rise buildings subjected to wind disturbances. While most of usual viscoelastic dampers have limitation on temperature and frequency dependencies, etc., the proposed high‐hardness viscoelastic rubber dampers possess many unprecedented properties. High hardness, large stiffness, small temperature and frequency dependencies are examples of such properties. Mechanical modelling of the proposed high‐hardness viscoelastic rubber dampers is introduced first, and the wind‐induced response of high‐rise buildings with and without the proposed high‐hardness viscoelastic rubber dampers is computed under dynamic horizontal loads derived from wind tunnel tests. It is shown that high‐rise buildings with the proposed high‐hardness viscoelastic rubber dampers exhibit extremely smaller wind‐induced responses (both along‐wind and cross‐wind responses) than those without such dampers. In particular, a remarkable reduction of acceleration has been achieved owing to sufficient hysteresis even in the small strain range. It is concluded that the proposed high‐hardness viscoelastic rubber dampers can upgrade the habitability environment of building structures dramatically. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, the coupling–control effect of a sky‐bridge for adjacent tall buildings has been investigated. To this end, two building structures of 42‐ and 49‐stories connected by a sky‐bridge and constructed in the Seoul, Korea, were used. Earthquake excitations and wind load data obtained from wind tunnel tests are employed for numerical simulation. Lead rubber bearings and linear motion bearings were used for the connectors between the sky‐bridge and the example buildings. Several types of connector configurations were investigated to find an appropriate configuration for the tall buildings considered. The displacement and acceleration responses of the coupled buildings, and the reactions of the bearings and member forces of the sky‐bridge were evaluated in comparison with the uncoupled buildings. Numerical results demonstrated that the sky‐bridge could effectively increase the damping ratio of the coupled tall buildings, resulting in decreased dynamic responses. In addition, it was shown that the coupling–control effect of the sky‐bridge could be significantly improved by using additional viscous dampers. The connection system and configuration proposed in this study had been applied to the construction of the sky‐bridge for the example structures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A series of large‐scale shaking table tests are conducted on tall buildings with and without energy dissipation devices on soft soils in pile group foundations, representing pile‐soil‐structure interaction (PSSI) system and the corresponding fixed‐base situations. The superstructure is a 12‐story reinforced concrete (RC) frame. The dynamic characteristics of the test models show that the frequencies decrease and the damping ratio increase in PSSI system by comparison with the fixed‐base structures. The mode shapes of PSSI system are different from that under fixed‐base condition, and the mode shapes of structure without dampers change greater than that with energy dissipation devices under various white noises. An improved method for structural dynamic characteristics, considering the impedance function of piles, is developed to address the issue of modal parameters with PSSI effect. In addition, the structural dynamic parameters of the large‐scale shaking table tests are identified using the modification method and other regulation methods, demonstrating that the improved approach is highly accurate and effective. Subsequently, a design procedure for viscous dampers of structures with PSSI effect is presented based on the dynamic characteristics of the system. Finally, the dynamic responses of the structure with viscous dampers in the practical engineering are decreased effectively, indicating the good performance of designed viscous dampers. The numerical results also show that the damping efficiency of interstory drift is larger than the acceleration and interstory shear force. Therefore, the improved modal parameters method, validated through a series large‐scale shaking table tests, is applicable for identifying dynamic characteristics of pile‐soil‐structure with energy dissipation devices system. The design procedure of viscous dampers, proved by a reinforced concrete frame structure located on a practical Shanghai soft site, can be employed to design the viscous dampers considering seismic PSSI effect.  相似文献   

5.
This paper presents an integrated procedure for wind‐induced response analysis and design optimization for rectangular steel tall buildings based on the random vibration theory and automatic least cost design optimization technique using Micro‐Genetic Algorithm (GA). The developed approach can predict wind‐induced drift and acceleration responses for serviceability design of a tall building; the technique can also provide an optimal resizing design of the building under wind loads to achieve cost‐efficient design. The empirical formulas of wind force spectra obtained from simultaneous measurements of surface pressures on various rectangular tall building models in wind tunnel tests are verified testified using a published example. Upon the known wind force spectra, the equivalent static wind loads for every storey, such as along‐wind, across‐wind and torsional loads, are then determined and applied for structural analysis including estimation of wind‐induced responses. An improved form of GAs, a Micro‐GA, is adopted to minimize the structural cost/weight of steel buildings subject to top acceleration and lateral drifts constraints with respect to the discrete design variables of steel section sizes. The application and effectiveness of the developed integrated wind‐induced response analysis and design optimization procedure is illustrated through a 30‐storey rectangular steel building example. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Tuned mass dampers (TMDs) are employed to control the wind‐induced responses of tall buildings. In the meantime, TMD may have an impact on the correlation of wind‐induced responses and combination coefficients of equivalent static wind loads (ESWLs). First, the mass matrix and stiffness matrix were extracted in this paper in accordance with the structural analysis model of two high‐rise buildings, and on that basis, the wind‐induced vibration responses analysis model with and without TMD was established. Second, the synchronous multipoint wind tunnel test to measure the pressure was performed for two high‐rise buildings, and the time history of wind‐induced vibration responses with and without TMD was studied. Finally, the impact of TMD on the correlation of wind‐induced responses and combination coefficients of ESWLs was discussed. The results of two examples suggest that after the installation of TMD, the increase of ρxy was 2.1% to 35.0% and ρyz was 2.8% to 45.6% at all wind directions for Building 1, and the increase of ρxy was 3.9% to 17.1% and ρyz was 6.8% to 38.3% for Building 2. The combination coefficients of ESWLs of two buildings were 3% to 6% larger than that of the original structure. The conclusion of this paper can be referenced by the wind resistant design of high‐rise buildings with TMD.  相似文献   

7.
The equations of motion are derived for a translational single degree of freedom system equipped with a ‘pendulum‐type’ tuned mass damper (TMD) under dynamic force and base acceleration excitations. The complex frequency response functions are obtained. Following response minimization procedures, the optimum parameters of the TMD under random white noise excitations are determined. The effect of the TMD in reducing the response is expressed in terms of an equivalent viscous damping. The optimum design parameters and the corresponding efficiency of the TMD under both wind and earthquake dynamic loads are presented in design charts. The effect of the structure inherent and aerodynamic damping on the optimum parameters is studied and simplified charts to account for such effect are provided. Moreover, a design chart for the over‐optimum‐damped TMDs is presented. The translational‐type TMD is treated as a special case of the pendulum‐type. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
A novel viscous damped system and its principles are proposed in the paper. It is a novel viscous damped system with multilever mechanism that can improve the energy dissipation capacity of conventional viscous dampers. In order to compare the damping effects of the novel viscous damper with that of the conventional viscous damper, a shaking table test of a three‐story steel frame structure is performed. Testing results indicate that the novel viscous damped system is more efficient. The elastic time‐history analysis of a super high‐rise frame‐core tube structure is studied under the frequently occurring earthquake. Dynamic loads take two groups of ground motions with different period characteristics into account. Main response values such as base shear, interstory drift, and acceleration factor under long‐period ground motions are apparently larger than the seismic results due to standard ground motions. Responses between the undamped structure and the damped structure with conventional viscous dampers or the latest products are compared. It is concluded that the proposed viscous damped system can perform more effectively in reducing high‐rise structural responses subject to long‐period ground motions.  相似文献   

9.
This paper introduces a seismic energy dissipation technology—viscous damping outrigger (VDO)—which is composed of outrigger truss and viscous damper. The viscous damper is set up vertically at the end of outrigger truss, which is an innovative and high‐efficiency arrangement. VDO can fully utilize the characteristic of structural lateral deformation of super high‐rise buildings to increase the efficiency of viscous dampers for enhancing structural security, improving seismic performance, and reducing construction expenditure. In this paper, working principle and seismic energy dissipating mechanism of VDO are explained firstly. Then, the influence of viscous damper parameters on energy dissipation efficiency is studied. Next, the optimal position of VDO in a super high‐rise building is analyzed in detail. Lastly, the application of VDO in structural seismic design of a super high‐rise building in China will be clearly verified based on their feasibility, economy, and safety.  相似文献   

10.
Tuned mass dampers (TMDs) can be used as vibration control devices to improve the vibration performance of high‐rise buildings. The Shanghai Tower (SHT) is a 632‐m high landmark building in China, featuring a new eddy‐current TMD. Special protective mechanisms have been adopted to prevent excessively large amplitude of the TMD under extreme wind or earthquake loading scenarios. This paper presents a methodology for simulating behavior of the new eddy‐current TMD that features displacement‐dependent damping behavior. The TMD model was built into the SHT finite element model to perform frequency analysis and detailed response analyses under wind and earthquake loads. Furthermore, soil‐structure interaction (SSI) effects on wind and seismic load responses of the SHT model were investigated, as SSI has a significant impact on the vibration performance of high‐rise buildings. It was found that SSI has more significant effects on acceleration response for wind loads with a short return period than for wind loads with a long return period. Some of the acceleration responses with SSI effects exceed design limits of human comfort for wind loads with shorter return periods. As to the seismic analyses, it was found that SSI slightly reduces the displacement amplitude, the damping force, and the impact force of the TMD.  相似文献   

11.
12.
Steel‐framed modular buildings afford certain advantages, such as rapid and high‐quality construction. However, although steel‐framed modules have been adopted in several countries, most of them are limited to low‐to‐medium‐rise structures; modular high‐rise buildings are rare. This study proposes a feasible structural design solution for high‐rise buildings using a steel‐framed modular system. A 31‐story student hostel building in Hong Kong is redesigned as a steel‐framed modular building and used as a case study. The finite element models of the building are formulated, and the structural behaviors under wind and earthquake load scenarios are compared. Moreover, the structural design process used for the 31‐story building is applied to design a hypothetical 40‐story modular building to further examine the proposed design solution. The numerical analysis results indicate that the roof lateral displacements and interstory drift ratios of the redesigned modular building are within the allowable limits of design codes; moreover, the modular connections behave elastically under the most adverse loading scenarios. Accordingly, the proposed solution can be used to design steel‐framed modular buildings of up to 40 stories, while complying with relevant wind and seismic codes.  相似文献   

13.
Passive energy dissipation devices have been used around the world to mitigate the response of structures under dynamic excitations, such as wind or seismic loading. The use of tuned mass dampers (TMD) in tall and slender buildings to reduce unwanted responses has proved to be very effective. The main purpose of this work is to study the structural behavior of a 115‐m‐height slender monument fitted with TMDs subjected to simulated wind and seismic loading. Turbulent wind forces were calculated based on samples of turbulent wind speed simulated with an auto regressive and moving average (ARMA) model. Ground motions compatible with a seismic site spectrum were also simulated. An optimization approach is suggested to determine the parameters of the TMDs that reduce the structural response to the maximum. The effectiveness of the TMDs for reducing the structural response of the monument is discussed in detail, and the use of optimally tuned TMDs is emphasized.  相似文献   

14.
Vibration control of a 288‐m supertall building with connective structure is studied in this work. Fluctuating wind time series of the structure in forward and reverse Y‐direction in a 10‐year frequency are simulated by modified auto‐regressive method (AR method) to perform wind vibration analysis, and six minor and major earthquake waves are provided by building designer to perform earthquake analysis. Three vibration control schemes with nonlinear viscous dampers are proposed to control structural dynamic responses under wind and earthquake excitations. The dynamic responses of the structure with the proposed control schemes in wind and earthquake excitations are investigated and their vibration control effects are analysed comparatively. The study results show that the modified AR method is reliable and effective for simulating the fluctuating wind exerted on the building. The excessive dynamic responses induced by wind and earthquake excitations can be controlled effectively by the proposed schemes. The peak acceleration of top storey can be reduced by almost 40% for the proposed control schemes in wind excitation. The elastic working state of the connective body between the high tower part and the low tower part in major earthquakes can also be ensured totally. So, the validity and feasibility of the proposed schemes in reducing structural vibration responses can be fully approved. Some suggestions about structural analysis and design under wind and earthquake excitations are proposed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Damped outriggers for tall buildings draw increasingly attentions to engineers. With a shaking table test, two models of a high‐rise steel column‐tube structure are established, one with outriggers fixed to the core and hinged at the columns, whereas the other's cantilevering outriggers are connected to columns by viscous dampers. According to their dynamic properties, five earthquake waves are selected from the Ground Motion Database of Pacific Earthquake Engineering Research Center (PEER), and two artificial waves are generated by software SIMQKE_GR. Under various peak ground accelerations (PGAs), nonlinear time‐history analysis is applied to compare structural elastic seismic responses, including accelerations, inter‐story drifts, base shear force, damper's response and additional damping ratios. It is concluded that under minor earthquakes, accelerations, inter‐story drifts and base shear force of structure with damped outriggers are larger than or nearly equal to those of the one with fixed outriggers, and the viscous dampers hardly work. But as PGA increases, the contrary situation happens, and the effect of viscous dampers is enhanced as well. The additional damping ratio reaches around 4% under mega earthquakes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Across‐wind aerodynamic damping ratios are determined from the wind‐induced acceleration responses of 10 aeroelastic models of square super high‐rise buildings in an urban flow condition (exposure category C in the Chinese code) using the random decrement technique. Moreover, the influences of amplitude‐dependent structural damping ratio on the estimation of aerodynamic damping ratio are discussed. The validity of estimated damping is examined through a comparison with previous research achievements. On the basis of the estimated results, the characteristics of the across‐wind aerodynamic damping ratios of modified square high‐rise buildings are studied. The effects of aerodynamically modified cross‐sections, such as chamfered, slotted and tapered cross‐section, on the across‐wind aerodynamic damping ratio are investigated. The results indicate that modifications of cross‐sections are not always effective in suppressing the aeroelastic effects of super high‐rise buildings. Low corner‐cut ratios (chamfer ratios from 5% to 20% and slot ratios from 5% to 10%) and low taper ratio (1%) significantly decrease the magnitudes of absolute aerodynamic damping ratios. However, large modifications of cross‐sections (slot ratio of 20% and taper ratios from 3% to 5%) increase wind‐induced responses by changing the aerodynamic damping ratios. According to the database, empirical aerodynamic damping function parameters are fitted for high‐rise buildings with aerodynamically modified square cross‐sections. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a Drift Design Structural Model (DDSM) for the design optimization of high‐rise buildings in seismic zones. The model is formulated as a Generalized Single Degree of Freedom System subjected to equivalent static seismic loadings. The model objectives are: (a) the minimization of the structure weight; (b) the minimization of the structure top drift; and (c) the uniform distribution of the inter‐story drifts over the building height in order to minimize earthquake damage through the increase in plastic ductility. Seven high‐rise buildings were analysed in order to validate the model, to illustrate its use and to demonstrate its capabilities in structural design optimization in earthquake zones. The results obtained show that the DDSM performed well and consequently can be of practical value to structural designers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
High‐frequency force balance test is a major technical means to evaluate the wind effect of super high‐rise buildings. Most super high‐rise buildings have the characteristic that the first two‐order modal frequencies are close, and thus, considerable modal coupling effects (MCEs) may occur under wind load. For a balance model system (BMS), MCEs increase the difficulty of correcting aerodynamic distortion signals. For the wind‐induced vibration analysis of a structural system (PSS), the calculation results of the wind‐induced response and the equivalent static wind load (ESWL) may be significantly affected without considering MCE. Based on the above‐mentioned signal distortion of BMS and the modal coupling problem of PSS, this study proposes a wind‐induced vibration calculation method for the two coupled systems (BMS and PSS). The method uses the second‐order blind identification technique based on complex modal theory and the Bayesian spectral density method considering full aerodynamic characteristics to achieve effective correction of the distortion signal in BMS. In addition, it deduces the calculation method of the wind‐induced response and ESWL considering the three‐dimensional coupled vibration of a super high‐rise building. The wind effect calculation results of a 528‐m super high‐rise building confirm the necessity and effectiveness of the proposed method.  相似文献   

19.
When subjected to long‐period ground motions, many existing high‐rise buildings constructed on plains with soft, deep sediment layers experience severe lateral deflection, caused by the resonance between the long‐period natural frequency of the building and the long‐period ground motions, even if they are far from the epicenter. This was the case for a number of buildings in Tokyo, Nagoya, and Osaka affected by the ground motions produced by the 2011 off the Pacific coast of Tohoku earthquake in Japan. Oil‐dampers are commonly used to improve the seismic performance of existing high‐rise buildings subjected to long‐period ground motion. This paper proposes a simple but accurate analytical method of predicting the seismic performance of high‐rise buildings retrofitted with oil‐dampers installed inside and/or outside of the frames. The method extends the authors' previous one‐dimensional theory to a more general method that is applicable to buildings with internal and external oil‐dampers installed in an arbitrary story. The accuracy of the proposed method is demonstrated through numerical calculations using a model of a high‐rise building with and without internal and external oil‐dampers. The proposed method is effective in the preliminary stages of improving the seismic performance of high‐rise buildings.  相似文献   

20.
Ping An Finance Center with a height of 600 m and 118 storeys, located in Shenzhen, is currently the second tallest building in China. This paper presents a comprehensive study of wind effects on the supertall building through wind tunnel testing and field measurement. The wind‐induced loads and pressures on the skyscraper were measured by high‐frequency force balance technique and synchronous multipressure sensing system, respectively. In the wind tunnel study, a whole range of characteristic properties, including mean and r.m.s force coefficients, power spectral densities, coherences, correlations, and phase‐plane trajectories, wind‐induced displacement, and acceleration responses were presented and discussed. In addition, a field measurement study of the dynamic responses of Ping An Finance Center was conducted during a tropical cyclone, which aimed to verify the design assumptions and further the understanding of the dynamic properties and performance of the 600‐m‐high supertall building, including natural frequencies, damping ratios, and wind‐induced structural responses. Then, the serviceability of the skyscraper is assessed on the basis of the experimental results and field measurements. The outcomes of this combined model test and field measurement study are expected to be useful for the wind‐resistant design of future supertall buildings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号