首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Rapidly-solidified powders of an iron-based superalloy were characterized before and after consolidation by hot isostatic pressing. Powders made by inert gas atomization were compared to powders made by centrifugal atomization. Although many of the powder characteristics were similar, the microstructures were not. The inert gas atomized powder structure is cellular while the centrifugally atomized powder structure is dendritic. In general the finer powder particles have the finer micro-structure with the effect more noticeable in centrifugally atomized powders. After consolidation, the differences in microstructure are more dependent on the consolidation temperature and post-consolidation heat treatment than in the powder type or size. Higher consolidation temperatures and/or post-consolidation heat treatment will result in transformation of the as-solidified microstructures. The transformed microstructure and the mechanical properties can in some cases be related to the as-solidified structure. Heat treatment is needed to obtain mechanical properties equivalent to those of ingot metallurgy processed material.  相似文献   

2.
Herein, the effect of electromagnetic shocking treatment (EST) on microstructure evolution and wear resistance of M50 steel treated by ultrasonic shot peening (USP) is investigated. The microstructure observation indicates that the EST promotes the precipitation of nanoscale carbides. The average grain size decreases slightly and the submicron grain layer increases after EST. The low-angle grain boundaries generated by USP will transform into high-angle grain boundaries, thereby refining the grains on the surface during EST. In addition, the surface hardness of USP-M50 steel decreases slightly, accompanied by the reduction of surface residual stress after EST. The wear resistance results indicate that the wear loss of the EST specimens decreases by 15.7% comparedwith the specimens after USP. The improvement of wear resistance induced by EST is attributed to the increased fine precipitations. These precipitations hinder the grinding of abrasive particles into the matrix and connect with wear debris and oxide particles to form well consolidated self-lubricating films to prevent wear losses. The refinement of surface structure is another important reason for the improvement of wear resistance.  相似文献   

3.
The microstructure and constitution of T15 tool steel processed from gas-atomized powder have been characterized. From the atomized powder, four particle size ranges (≤840, 250 to 840, 44 to 100, and ≤44 Μm) were consolidated to full density by hot isostatic pressing (“hipping”) at 1130 ‡C or 1195 ‡C. Both atomized powder and consolidated material were examined by means of optical and electron microscopy, X-ray diffraction, chemical analysis, and micro-hardness. A segregated structure exists in the gas-atomized powder, independent of particle size; MC and M2C carbides are present, primarily at cell boundaries. The matrix of the powders is a mix of martensite and retained austenite. Weight fraction and overall composition of the carbides are insensitive to particle size, but the proportion of MC carbides increases with decreasing particle size. After consolidation, MC, M6C, and M23C6 carbides are present in a ferrite matrix. The carbide size distribution is skewed to larger carbide sizes at the higher consolidation temperature, independent of the prior particle size fraction, but there is no significant change in carbide volume fraction. For a given consolidation temperature, the size distribution of the MC and M6C carbides is broader for the coarser particle size fractions.  相似文献   

4.
Particulate wear debris from total hip prosthetic components can stimulate macrophages to produce mediators of osteolysis which may cause aseptic implant loosening. This study evaluated the in vitro response of murine peritoneal macrophages to polyethylene particles of definitive size distributions at varying volume doses. Ceridust 3615 polyethylene particles with a mean size of 0.21, 0.49, 4.3 and 7.2 microm and GUR 120 polyethylene resin with a mean size of 88 microm were co-cultured with C3H murine peritoneal macrophages at volume (microm)3 to cell number ratios of 100:1, 10:1, 1:1 and 0.1: 1. The secretion of IL-6, IL-1beta and TNF-alpha was determined by ELISA. Significantly elevated levels of TNF-alpha and IL-1beta were determined at 100:1 ratios when the macrophages were challenged with particles with a mean size of 0.49, 4.3 and 7.2 microm, and at 10:1 ratios for particles with a mean size of 0.49 and 4.3 microm. IL-6 production was significantly elevated at 100:1 ratios for mean particle sizes of 0.49 and 4.3 microm. Particles outside this range produced considerably less cytokine suggesting that both the size and volume (or number) of polyethylene particles are critical factors in macrophage activation. Therefore particles in the phagocytosable size range of 0.3-10 microm appear to be the most biologically active.  相似文献   

5.
研究了颗粒粒度不同的气体雾化W9Mo3Cr4V高速钢粉末的组织、形貌及结构.结果表明:粉末由铁素体和奥氏体基体和分布在周围的MC及M2C型碳化物组成,基体组织为等轴晶及树枝晶,碳化物在空间上呈连续网状或树枝状分布;粉末中相的含量与粉末粒度相关,随高速钢粉末粒度减小,组织中的铁素体和MC型碳化物含量增加,奥氏体和M2C型碳化物含量减少.  相似文献   

6.
超音速火焰喷涂技术制备的双峰WC–CoCr涂层磨粒磨损特性   总被引:1,自引:0,他引:1  
采用超音速火焰喷涂(high velocity oxy-fuel,HVOF)工艺分别制备了双峰结构和常规结构的WC–CoCr复合涂层。比较了不同结构WC–CoCr涂层的组织结构、显微硬度和断裂韧性;在涂层磨粒磨损实验的基础上,探讨了双峰结构WC–CoCr涂层的磨损机理。结果表明:与常规结构的WC–CoCr复合涂层相比,在由含质量分数30%超细WC粉末制备的双峰结构涂层中,WC在黏结相中溶解最多,断裂韧性最低;由含质量分数50%超细WC粉末制备的双峰结构涂层最致密,显微硬度与断裂韧性最高,耐磨粒磨损性能最优良。  相似文献   

7.
The suitability of Ni3Al intermetallics as reinforcement for Al-base materials for tribological applications has been investigated. For this purpose, an Al/Ni3Al (5 vol pct) composite was prepared by powder metallurgy and tested in air against steel counterfaces at the load range of 45 to 178 N. For comparison, unreinforced Al specimens were processed and tested under the same conditions. Tribological behavior was evaluated by microstructural examination of wear-affected zones and weightloss measurements of specimens and counterfaces. It was found that a significant amount of Fe-rich oxide particles become incorporated into the Al matrix during wear, forming a cracked tribolayer. The wear behavior of Al/Ni3l composite as a function of the applied load was not accurately reflected by the weight loss of worn specimens. Results highlight the role of Ni3Al particles as loadbearing elements due to their excellent bonding to the Al matrix, their interfaces withstanding the wear stresses even at the highest applied load. Moreover, Ni3Al particles limited the incorporation of wear debris to the Al matrix and reduced wear damage occasioned to the steel counterfaces compared to that of pure aluminum specimens. Formerly with the Physical Metallurgy Department (CENIM-CSIC)  相似文献   

8.
 The striations on the surface of 3Cr2W8V die steel were processed by laser. The microstructure, hardness, wear resistance and thermal fatigue behavior of the specimens processed by laser were measured. The appearance and mechanism of thermal fatigue crack propagation in the zone processed by laser were observed and discussed. The results show that the wear resistance and thermal fatigue resistance of materials processed by laser are all better than those of the unprocessed material. The processed zone by laser plays a role in baffling wearing process and crack propagation. The pile nail effect of processed zone is the main factor for improving the wear resistance and thermal fatigue resistance of material.  相似文献   

9.
The properties of fine-grained iron-copper pseudo-alloys (ICPA) and consolidation processes that occur during their sintering are studied. The grains are no larger than 0.5 μm. It was established that the specimens undergo shrinkage, not growth, when fine iron-copper mixtures are sintered within the range 600–1130 °C. This occurs as a result of active consolidation of the dispersed powder mixture, shortening of the diffusion paths, and the active formation of solid solutions based on iron and copper. Sintered ICPAs have a stable fine-grained microstructure with a maximum grain size of 0.5 μm only when they are sintered and treated in the solid phase. A coarse-grained structure is formed when ICPAs are heated to temperatures at which a liquid phase appears. Fine-grained ICPAs are also characterized by high hardness (up to 240–260 HB). Translated from Poroshkovaya Metallurgiya, Nos. 1–2(411), pp. 22–29, January–February, 2000.  相似文献   

10.
In the present investigation, the mechanical and wear properties of Al-20Si alloy processed by spray casting and vertical centrifugal casting processes have been evaluated and compared. In spray casting process the melt was gas atomized and the spray-deposited over a copper substrate. The spray-deposit exhibited considerable porosity and subjected to hot isostatic pressing to reduce the porosity from 19 to 2%. The centrifugal casting process provided cylindrical shaped preform with characteristically low porosity. The microstructure of spray cast alloy showed ultra fine and uniformly distributed primary and eutectic Si particles in the Al matrix. In contrast, a coarse polyhedral shaped morphology of the primary Si phase was observed in the microstructure of the centrifugal cast alloy. The wear rate of spray cast alloy was invariably lower than that of centrifugal cast alloy. The room temperature tensile and hardness tests of spray cast alloy showed considerable improvement in its strength, ductility and hardness over that of centrifugal cast alloy. The improvement in wear properties of spray cast alloy is discussed in the light of its microstructural modification induced by spray casting and nature of debris particles generated during wear testing.  相似文献   

11.
A gamma titanium aluminide was made by elemental powder metallurgy. For consolidation of the alloy from powder blending, either hot extrusion or hot forging was used. A good combination of tensile yield strength and ductility was obtained by hot extrusion that produced a grain size of 50 μm. Consolidation by forging, however, resulted in a porous microstructure. On the basis of an investigation of the cause of the porosity by an Al/Ti diffusion couple experiment and by characterization of the temperature peaks due to an exothermic reaction among elemental powder particles, it was concluded that a transient phase such as TiAl3 was the culprit. Being the source of Al diffusion, the transient phase leaves behind Kirkendall voids when it forms prior to the major exothermic reaction among elemental powder particles. From this study, two processing techniques to circumvent the porosity were proposed and verified: a fast heating to the consolidation temperature or sufficient soaking above the reaction temperature prior to consolidation. A sound, fully lamellar, β-phase controlled microstructure was obtained by these methods.  相似文献   

12.
Data on mechanical properties of nanocrystalline materials have been limited, due in part to the difficulty in producing consolidated nanocrystalline materials of sufficient quantity for characterization and evaluation. A second problem is consolidation and retention of the nanostructure. A vacuum hot-pressing consolidation program has been developed to produce full-dense compacts from attrition milled, mechanically alloyed, nanograin micron-size particles of Fe-2 wt pet Al powder. The resulting compacts were of sufficient size to allow evaluation of microstructure, density, hardness, and tensile properties. The compacted microstructure was a composite of pure iron submicrograins and Fe-A1 nanograin clusters. Tensile strength was found to be proportional to the sample’s density squared. For full-dense compacts, tensile strength of nanocrystalline compacts approaching 1 GPa was obtained.  相似文献   

13.
This article describes in detail the effect of cooling rate on the microstructure of a low-carbon Fe-12 pct Cr alloy. The alloy was prepared using a relatively simple technique, i.e., rapid cooling of the melt in a copper wedge mold. The dependence of microstructure on the cooling rate (∼40 to 105 K/s) has been determined by X-ray diffraction (XRD), microhardness measurement, optical microscopy (OM), and transmission electron microscopy (TEM). It has been found that the matrix structure over a large cooling rate range is composed of columnar ferrite grains, the size of which decreases with increasing cooling rate. Precipitation of second phases has been observed at either the ferrite grain boundaries or within the ferrite grains. The former takes place along the entire wedge sample, whereas the latter characterizes a region 12 mm away from the tip of the wedge sample. The essential structure of the grain boundary precipitates was identified as martensite, which is a transformation product of austenite precipitated at high temperatures. Retained austenite was identified at the tip region as isolated particles (<4 μm). The precipitates within the ferrite grains appeared as planar colonies consisting of two sets of needles. The density of these precipitates increases with increasing the cooling rate while their size decreases. Characteristic precipitate-free zones (PFZs) at the ferrite grain boundaries were observed and are discussed.  相似文献   

14.
A dynamic intervertebral disc prosthesis (DIDP) has been developed. It consists of a CoCrMo body and uses Ti6Al4V springs to replicate the mechanical function of the lumbar joint. Wear studies have been performed previously on the DIDP using two specialized simulators to test the wear properties of the moving parts of the disc prosthesis. A pin-in-slot simulator generates wear that would occur in the hinge-pin assembly of the prosthesis. A spring-in-pocket simulator approximates the conditions under which the springs would wear against the body of the prosthesis. The spring-pocket interface is responsible for the production of approximately 90% of the total wear occurring in the prosthesis, and is therefore the main focus of this study. Bovine serum with a preservative has been used as a lubricant in both simulators. The spring-in-pocket simulator compares the effects of two different manufacturing techniques of CoCrMo (HIPing and forging) on their wear characteristics against Ti6Al4V springs. Debris from the spring-in-pocket simulator has been isolated from the serum lubricant and characterized using scanning electron microscopy techniques. The morphology of the Ti6Al4V fragments is rough and irregularly shaped. The size of these fragments ranges from < 1 microns to > 30 microns. The forged CoCrMo alloy debris has an irregular polyhedral shape, with sizes in the same range as the spring fragments. The morphology of the HIPed CoCrMo debris is spherical with a size range < 5 microns to > 30 microns. Length and width measurements of micron-size particles were made with the particle measurements feature of the scanning electron microscope. Micron-size particles were found in all stations. This article provides a unique way to isolate and analyze debris from serum lubricants used in simulators.  相似文献   

15.
3Cr2W8V钢高温高载下的干摩擦滑动磨损特性   总被引:6,自引:0,他引:6  
对3Cr2W8V钢高温高载下的干摩擦滑动磨擦滑动磨损性及磨损面形貌、磨损面表层和次表层的组织和硬度进行了试验和分析。结果表明:高载下3Cr2W8V钢的力学性能是决定材料磨损特性的低载下磨损面上形成氧化物磨屑的覆盖,而在国高载和高温下都未形成氧化物磨屑的覆盖;高温高载下,主要因3Cr2W8V钢本身承能力下降,氧化物磨屑未能覆盖于磨损面上,故对磨损面起不到保护作用。  相似文献   

16.
In the area of orthopaedic implants, particularly total hip joint replacements, a metal-plastic combination is still the most popular choice consisting of a femoral head fabricated from 316L stainless steel, Ti alloy or Co-Cr alloy in contact with an ultra-high molecular weight polyethylene (UHMWPD) acetabular cup. It is recently considered that wear of the UHMWPE cup is of major concern. Generation of the wear debris can have adverse effects on the body, both localized and systemic. It is envisaged that wear of the prosthetic components, particularly those fabricated from UHMWPE can be reduced through the use of surface coatings. The aim of this investigation was to deposit a selection of refractory element nitride-based coatings (TiN, TiA1N, ZrN) onto 316L stainless steel substrates, using physical vapour deposition (PVD) technology and to study their sliding wear behaviour in contact with both UHMWPE and 316L stainless steel pins, using a pin-on-plate testing rig. Tests were conducted in Ringers solution and Ringers solution plus bone cement particles. The volume of material removed from the pins served as an indication of their wear behaviour. Wear mechanisms were identified using scanning electron microscopy. The results of these findings and the potential for these coatings to be used in orthopaedic applications are discussed.  相似文献   

17.
Studies have been made on the effects of the nature, textile structure, and strength characteristics of fibrous reinforcement and on hybrid reinforcement, nature of the polymer matrix, and the addition of ultrafine diamond powder on the coefficient of friction and wear of a polymer composite containing a thermoreactive matrix. The tests were performed in air without lubricant with an insert-shaft pair scheme with counterbody composed of chromed cast iron and with a ceramic counterbody (boron carbide, silicon carbide and nitride) at sliding speeds of 5, 10, and 15 m/sec and pressure 0.5 MPa. Glass plastics show more wear than carbon plastics on reinforcements with woven or knitted structures. The carbon plastics have tribotechnical properties at the level of the best ones. The ultrafine diamond powder substantially reduced the wear. The best tribotechnical properties occurred with the friction pair carbon-glass plastic against silicon nitride.  相似文献   

18.
Studies have been made on the effects of the nature, textile structure, and strength characteristics of fibrous reinforcement and on hybrid reinforcement, nature of the polymer matrix, and the addition of ultrafine diamond powder on the coefficient of friction and wear of a polymer composite containing a thermoreactive matrix. The tests were performed in air without lubricant with an insert-shaft pair scheme with counterbody composed of chromed cast iron and with a ceramic counterbody (boron carbide, silicon carbide and nitride) at sliding speeds of 5, 10, and 15 m/sec and pressure 0.5 MPa. Glass plastics show more wear than carbon plastics on reinforcements with woven or knitted structures. The carbon plastics have tribotechnical properties at the level of the best ones. The ultrafine diamond powder substantially reduced the wear. The best tribotechnical properties occurred with the friction pair carbon-glass plastic against silicon nitride.  相似文献   

19.
高能球磨稀土高硅铝合金粉末性能表征   总被引:1,自引:1,他引:0  
对快速凝固法制备得到的Al-20Si-0.35RE合金进行不同时间的高能球磨, 然后对球磨后的粉末进行多次热压变形, 采用XRD, ESEM以及TEM等表征变形前后合金粉末的显微组织, 并对变形后合金的导电性能进行了研究. 研究发现快速凝固Al-20Si-0.35RE合金粉末的显微组织主要由细小的Al-Si固溶体(0.3~0.5 μm)、初晶硅、稀土铝硅化合物(0.16~0.3 μm)组成; 随着球磨时间延长, 颗粒粒径显著减小; 经过多次热压变形后合金晶粒显著细化, 晶格畸变减小, 位错钉扎稀土化合物, 形成类似表面渗流效应, 合金导电率提高至70%IACS.  相似文献   

20.
以偏钨酸铵(AMT)、柠檬酸和硝酸铈为原料,用溶胶-凝胶法(sol-gel)制备稀土CeO2掺杂纳米钨粉。通过热重-差热(TG-DSC)、X射线衍射(XRD)、扫描电子显微镜(SEM)、比表面积法(BET)等测试手段对复合粉体的合成工艺、物相、颗粒形貌和粒径进行了分析。结果表明:当pH值为1时,还原后的粉体颗粒呈准球形,无团聚,稀土元素以CeO2形式存在且均匀地分布在钨粉中,平均颗粒粒径为80nm左右,满足制备高性能掺杂稀土氧化物亚微米结构浸渍阴极的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号