首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Star polymers are hyperbranched polymers with fascinating properties and exhibiting self‐assembly behaviour that have recently attracted a lot of interest in the field of gene delivery. This perspective aims to summarize the latest studies of star polymers as gene delivery vectors. Specifically, the aim is to identify and discuss the main synthetic methodologies that are used to fabricate star polymers and which structural characteristics affect their ability to be used as gene delivery agents. © 2014 Society of Chemical Industry  相似文献   

2.
Cationic polymers provide versatile traits that fit for nonviral gene delivery applications. However, cationic polymers could exhibit significant cytotoxicity. Poly(acrylic acid) by conjugating side chains with either primary amine or with different number of alpha mine of alanine (denoted as PAla polymers) was chemically modified and the impact of amine groups of poly(acrylic acid) regarding biocompatibility and intracellular gene delivery efficiency was investigated. Design of PAla polymers proved that the incorporation of alanine in cationic polymers may significantly decrease cytotoxicity of the resulting polymers while maintaining the efficiency of cellular uptake and the intracellular gene delivery of the DNA/cationic polymer complex.  相似文献   

3.
Tang R  Ji W  Wang C 《Polymer》2011,52(4):921-932
A new type of pH-labile cationic polymers, poly(ortho ester amidine) (POEAmd) copolymers, has been synthesized and characterized with potential future application as gene delivery carriers. The acid-labile POEAmd copolymer was synthesized by polycondensation of a new ortho ester diamine monomer with dimethylaliphatimidates, and a non-acid-labile polyamidine (PAmd) copolymer was also synthesized for comparison using a triethylene glycol diamine monomer. Both copolymers were easily dissolved in water, and can efficiently bind and condense plasmid DNA at neutral pH, forming nano-scale polyplexes. The physicochemical properties of the polyplexes have been studied using dynamic light scattering, gel electrophoresis, ethidium bromide exclusion, and heparin competition. The average size of the polyplexes was dependent on the amidine:phosphate (N:P) ratio of the polymers to DNA. Polyplexes containing the acid-labile POEAmd or the non-acid-labile PAmd showed similar average particle size, comparable strength of condensing DNA, and resistance to electrostatic destabilization. They also share similar metabolic toxicity to cells as measured by MTT assay. Importantly, the acid-labile polyplexes undergo accelerated polymer degradation at mildly acid-pHs, resulting in increasing particle size and the release of intact DNA plasmid. Polyplexes from both types of polyamidines caused distinct changes in the scattering properties of Baby Hamster Kidney (BHK-21) cells, showing swelling and increasing intracellular granularity. These cellular responses are uniquely different from other cationic polymers such as polyethylenimine and point to stress-related mechanisms specific to the polyamidines. Gene transfection of BHK-21 cells was evaluated by flow cytometry. The positive yet modest transfection efficiency by the polyamidines (acid-labile and non-acid-labile alike) underscores the importance of balancing polymer degradation and DNA release with endosomal escape. Insights gained from studying such acid-labile polyamidine-based DNA carriers and their interaction with cells may contribute to improved design of practically useful gene delivery systems.  相似文献   

4.
Degradable poly(ester amine) (PEA) based on poly(ethylene glycol) dimethacrylate (PMEG) and polyethylenimine (PEI) were synthesized by Michael addition reaction. The ratios of PEI to PMEG in PEAs were 0.99, 1.02, and 1.07 with corresponding number‐average molecular weight of 1.3 × 104, 1.2 × 104, and 0.9 × 104, respectively. Degradation rate of PEA at pH 7.4 was higher than that at pH 5.6. Good plasmid condensation and protection ability was shown when N/P molar ratio of PEA to DNA was above 15 (N: nitrogen element in PEA, P: phosphate in DNA). PEA/DNA complexes had positive zeta potential, narrow size distribution, good dispersity, and spheric shape with size below 250 nm when N/P ratio was above 30, suggestion of their endocytosis potential. Compared with PEI 25 KDa, the PEAs showed essential nontoxic to HeLa, HepG2 and 293T cells. With an increase in the molecular weight of PMEG, the transfection efficiency of PEAs in HeLa, HepG2 and 293T showed a tendency to decrease as well as the percent decrease of gene transfection efficiency with serum. The mechanism of PEA‐mediated gene transfection was attributed to “proton sponge effect” of PEI in the PEA. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
The aim of this work was to synthesize and to characterize new pH‐sensitive hydrogels that can be used in the controlled release of drugs, useful for dermal treatments or ophthalmology's therapies. Copolymers containing 2‐hydroxyethyl methacrylate (HEMA) with different amounts of 2‐(diisopropylamino)ethyl methacrylate (DPA) (10 and 30 wt %) and different amounts of crosslinker agent, ethylene glycol dimethacrylate (EGDMA) (1 and 3 wt %) were prepared by bulk photo‐polymerization. The copolymers were fully characterized by using Fourier‐transform infrared (FTIR) spectra, differential scanning calorimetry, thermogravimetric analysis, UV–visible spectroscopy, and measuring water content and dynamic swelling degree. The results show that modifications in the amount of DPA and/or crosslinker in the hydrogel produce variations in the thermal properties. When adding of DPA, we observed an increase in the thermal stability and decomposition temperature, as well as a change in the mechanism of decomposition. Also a decrease in the glass transition temperature was observed with regard to the value for pure pHEMA, by the addition of DPA. The water content of the hydrogels depends on the DPA content and it is inversely proportional to both the pH value and the crosslinking degree. Pure poly‐HEMA films did not show important changes over the pH range studied in this work. The dynamic swelling curves show the overshooting effect associated with the incorporation of DPA, the pH of the solution, and the crosslinking density. On the other hand, no important variations in the optical properties were observed. The synthesized hydrogels are useful as a drug delivery pH‐sensitive matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
唐丽丽  何道航  观富宜 《化工学报》2012,63(11):3383-3392
肽基分子自组装以其丰富的自组装驱动力、新颖的自组装体纳米结构、自组装体的特殊功能及良好的生物相容性等,在纳米生物材料、护肤和化妆产品、药物传输释放、组织工程支架材料等方面有着广泛的应用前景。由天然氨基酸组成的自组装短肽具有良好的低细胞毒性,可控的降解性能,高的运载效率及细胞摄取率,同时还具有降低药物的毒副作用等优点。因此,它在作为药物和基因的纳米载药材料方面有着巨大的发展前景。使用自组装肽基材料形成的纳米载体对疏水性抗癌药物、蛋白质药物及基因等进行传递释放已成为生物医药学领域的研究重点,因此,对近年来自组装肽基纳米材料作为药物和基因载体在生物医药学上的研究进展做了综述。  相似文献   

7.
A new type of polyelectrolyte complexes formed by hyperbranched poly(sulfone‐amine) hydrochlorate and poly(sodium acrylate) has been reported. It has been found that the stoichiometry between polycation and polyanion is 1.16, which means that hyperbranched polyelectrolyte can also form the compact complexes in spite of the ill‐defined structure. Moreover, the effect of various parameters, such as the architecture of poly(sulfone‐amine), molecular weight of polymer, concentration and low molecular salt, on the complexation is also discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2323–2329, 2007  相似文献   

8.
Horseradish peroxidase (HRP)‐mediated crosslinking of poly(amido amine) (PAA) copolymers was successfully applied in the preparation of in situ forming degradable hydrogels under physiological conditions. PAA copolymers containing different amounts of tyramine residues (termed as pAEEOL/TA) could be synthesized through Michael‐type addition between methylenebisacryamide and amine mixture of 2‐(2‐aminoethoxy) ethanol and tyramine (TA). Depending on the amount of TA residue, the HRP, and H2O2 concentration, the gelation times could be varied from about 50 to 350 s. The swelling and degradation experiments indicated under physiological conditions the pAEEOL/TA‐based hydrogels are completely degradable within 6–8 days. Rheological analysis revealed that storage modulus of the hydrogels increased from 2500 to 4100 Pa when increasing HRP concentrations. Importantly, pAEEOL/TA copolymers have low cytotoxicity. Moreover, NIH 3T3 (mouse embryonic fibroblast) cells exposed in the degradation products of pAEEOL/TA‐based hydrogels retained high cell viability, implying that the hydrogels are cyto‐biocompatible. In vitro release of methylene blue and IgG protein from pAEEOL/TA‐based hydrogels could be effectively sustained by encapsulation of the drug in the hydrogels. The results indicate that HRP‐crosslinked, degradable pAEEOL/TA‐based hydrogels are promising for biomedical applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
The use of polymeric materials as the carrier in the controlled release of guest molecules has become an important research area in the polymeric materials science, because of their advantages of the safety, efficacy and patient convenience. One of them, star amphiphilic polymer can self‐assemble into supermolecular structure (polymer micelles) by the balance of hydrophilic and hydrophobic interaction. In this study, star amphiphilic copolymer consisting of hydrophobic and biodegradable poly(ε‐caprolactone) (PCL) and hydrophilic poly(ethylene oxide) (PEO) blocks were synthesized by two‐step ring‐opening polymerization. The resultant polymer was characterizated by FTIR, 1H‐NMR, and DSC to determine its chemical structure. The morpholoy of the polymer micelles was analyzed by TEM. Using star‐PCL‐b‐PEO as carriers and congo red as model guest molecules, the encapsulation and release properties were investigated by UV–visable analysis. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
A thermosensitive amphiphilic triblock copolymer, poly(d,l ‐lactide) (PLA)‐b‐poly(N‐isopropyl acrylamide) (PNIPAAM)‐b‐PLA, was synthesized by the ring‐opening polymerization of d,l ‐lactide; the reaction was initiated from a dihydroxy‐terminated poly(N‐isopropyl acrylamide) homopolymer (HO‐PNIPAAM‐OH) created by radical polymerization. The molecular structure, thermosensitive characteristics, and micellization behavior of the obtained triblock copolymer were characterized with Fourier transform infrared spectroscopy, 1H‐NMR, gel permeation chromatography, dynamic light scattering, and transmission electron microscopy. The obtained results indicate that the composition of PLA‐b‐PNIPAAM‐b‐PLA was in good agreement with what was preconceived. This copolymer could self‐assemble into spherical core–shell micelles (ca. 75–80 nm) in aqueous solution and exhibited a phase‐transition temperature around 26 °C. Furthermore, the drug‐delivery properties of the PLA‐b‐PNIPAAM‐b‐PLA micelles were investigated. The drug‐release test indicated that the synthesized PLA‐b‐PNIPAAM‐b‐PLA micelles could be used as nanocarriers of the anticancer drug adriamycin (ADR) to effectively control the release of the drug. The drug‐delivery properties of PLA‐b‐PNIPAAM‐b‐PLA showed obvious thermosensitive characteristics, and the release time of ADR could be extended to 50 h. This represents a significant improvement from previous PNIPAAM‐based drug‐delivery systems. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45304.  相似文献   

11.
A series of poly(?‐caprolactone)–poly(ethylene glycol) (PCL‐PEG) and poly(?‐caprolactone/glycolide)–poly(ethylene glycol) [P(CL/GA)‐PEG] diblock copolymers were prepared by ring‐opening polymerization of ?‐caprolactone or a mixture of ?‐caprolactone and glycolide using monomethoxy PEG (mPEG) as macroinitiator and Sn(Oct)2 as catalyst. The resulting copolymers were characterized using 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, and wide‐angle X‐ray diffraction. Copolymer micelles were prepared using the nanoprecipitation method. The morphology of the micelles was spherical or worm‐like as revealed by transmission electron microscopy, depending on the copolymer composition and the length of the hydrophobic block. Introduction of the glycolide component, even in small amounts (CL/GA = 10), disrupted the chain structure and led to the formation of spherical micelles. Interestingly, the micelle size decreased with the encapsulation of paclitaxel. Micelles prepared from mPEG5000‐derived copolymers exhibited better drug loading properties and slower drug release than those from mPEG2000‐derived copolymers. Drug release was faster for copolymers with shorter PCL blocks than for those with longer PCL chains. The introduction of glycolide moieties enhanced drug release, but the overall release rate did not exceed 10% in 30 days. In contrast, drug release was enhanced in acidic media. Therefore, these bioresorbable micelles and especially P(CL/GA)‐PEG micelles with excellent stability, high drug loading content, and prolonged drug release could be promising for applications as drug carriers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45732.  相似文献   

12.
Temperature‐responsive polymers have become increasingly attractive as carrier for the injectable drug delivery systems. In the present work, we have studied the preparation of poly(N‐isopropylacrylamide‐acrylamide‐vinilpyrrolidone) (NIPAAm‐AAm‐VP terpolymer) nanoparticulated terpolymer and its blend with poly(lactide‐co‐glycolide, PLGA; molar ratio of lactide/glycolid 1/3). Thermosensitive terpolymer, poly(NIPAAm‐AAm‐VP) was prepared by free‐radical polymerization in aqueous solution. The nanoparticles of poly(NIPAAm‐AAm‐VP) and its blend with PLGA containing naltrexone were prepared using the evaporation and w/o emulsion‐solvent evaporation methods, respectively. Nanoparticles prepared from terpolymer‐PLGA blend at low polymer concentration (5%) shows larger particle size (>300 nm) and higher drug content%. Various types of nanoparticles showed a burst release of less than 10% after 24 h . The results suggest that by regulating different variables, desired release profiles of naltrexone can be achieved using a blend of PLGA‐poly(NIPAAm‐AAm‐VP) nanoparticulate system. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
A family of branched and block copolymers consisting of poly(oxyalkylene) segments was prepared by using 2,4,6‐trichloro‐1,3,5‐triazine as the amine coupling agent. The copolymers were characterized to have a high molecular weight of up to 22,600 g/mol (Mn) and be thermally stable due to the presence of triazine cores and reactive chloride functionalities. Using the trifunctional poly(oxypropylene)‐block amines as the starting material and a two‐step coupling process, the prepared copolymers are star‐shape or branched, multiple‐block copolymers, with a versatile solubility in water or organic solvents. Further variation in amine structures of hydrophobic poly(oxypropylene) (POP‐) and hydrophilic poly(oxyethylene) (POE‐) blocks may allow the prepared copolymers to be amphiphilic. As an example, the triazine/POP T‐5000/POE ED‐2001 copolymer behaves as a surfactant and exhibits the capability of reducing toluene/water interfacial tension until 1.3 mN/m at critical association concentration as low as 0.001 wt %. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 29–36, 2005  相似文献   

14.
Mixed‐interpenetrated polymeric networks based on sodium alginate (ALG) and poly(N‐isopropylacryl amide) (PNIPAAm) covalently cross‐linked with N,N'‐methylenebisacrylamide are studied for their biocompatibility, nontoxicity, and biodegradability aiming their application in drug delivery. The presence of drug‐polymeric matrix interactions and the distribution of the drug in the polymeric network for theophylline‐loaded ALG/PNIPAAm hydrogels are also investigated by spectroscopic and microscopic methods. The quantitative evaluation of theophylline loaded hydrogels performed by NIR‐CI technique shows a better drug entrapment and a higher homogeneity of the samples with increased alginate content. The thermal behavior of the hydrogels is significantly modified by theophylline presence. The application of the ALG/PNIPAAm hydrogels as carriers for sustained drug release formulations was assessed by the theophylline release tests performed both by in vitro and in vivo studies. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40733.  相似文献   

15.
16.
The incorporation of hard particles into soft hydrogels can improve the mechanical properties and provide necessary bioactivity to the hydrogels for desired biomedical applications. Hydrogel composites containing hydroxyapatite (HA) are promising materials for orthopedic applications. In this study, injectable poly(ethylene glycol) (PEG) hydrogel precursor solutions containing HA particles and model protein bovine serum albumin (BSA) were synthesized in situ by photopolymerization. In vitro BSA release properties from the hydrogel composites containing various amounts of HA were investigated and discussed. Fourier transform infrared spectroscopy and scanning electron microscopy were employed to investigate the interaction between HA and the hydrogel network and the morphology of the hydrogel composites. It is found that PEG hydrogel composites containing HA sustained the release of BSA for at least 5 days and the presence of HA slowed down BSA release. Photopolymerized hydrogel composites containing HA may find potential use as a drug delivery matrix for orthopedic tissue engineering. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
Three‐dimensional polymeric networks, which quickly swell by imbibing a large amount of water or deswell in response to changes in their external environment, are called hydrogels. These types of polymeric materials are good potential candidates for drug‐delivery systems. In this study, we first synthesized poly(vinyl acetate‐co‐maleic anhydride) by free‐radical copolymerization. Then, they were modified with different molar ratios of melamine to prepare hydrogels that could be used in drug‐delivery systems. The hydrogels were characterized by Fourier transform infrared spectroscopy, 1H‐NMR, differential scanning calorimetry, and scanning electron microscopy. In the second step, Ceftazidime antibiotic was loaded on selected hydrogels. The in vitro drug release was investigated and compared in three different media (HCl solution at pH = 3 and buffer solutions at pH 6.1and pH 8). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40389.  相似文献   

18.
A series of triblock co‐polymers, consisting of a poly(ethylene glycol) (PEG) central block joined to two blocks of random p‐dioxanone‐co‐L ‐lactide copolymers were synthesized by ring‐opening polymerization of p‐dioxanone (PDO) and L ‐lactide (LLA) initiated by PEG in the presence of stannous 2‐ethylhexanoate catalyst. The resulting copolymers were characterized by various techniques including 1H and 13C NMR and FTIR spectroscopies, gel permeation chromatography, inherent viscosity, wide‐angle X‐ray diffractometry (WAXD) and differential scanning calorimetry (DSC). The conversion of PDO and L ‐lactide into the polymer was studied various mole ratios and at different polymerization temperature from 1H NMR spectra. Results of WAXD and DSC showed that the crystallinity of PEG macroinitiator was greatly influenced by the composition of PDO and L ‐lactide in the copolymer. The triblock copolymers with low molecular weight were soluble in water at below room temperature. © 2003 Society of Chemical Industry  相似文献   

19.
A new and efficient method for preparation of optically active poly(styrene–divinylbenzene) copolymers (PS-DVB) is presented here. This is carried out by Friedel–Crafts acylation reaction of chiral N-phthaloyl -leucine acid chloride with PS-DVB beads in the presence of aluminum chloride as Lewis acid catalyst and 1,2-dichloroethane as the solvent at ambient temperature. Reagents’ amounts and reaction conditions are mentioned and four samples with different amounts of functionality have been prepared. Final products were characterized by FT-IR and elemental analysis. The results obtained confirm that the above modification in preparation of chiral supported PS-DVB has been achieved well and in moderate yield.  相似文献   

20.
Bio‐based amphiphilic triblock copolymers with 100% renewably sourced poly(trimethylene ether) glycol (PO3G) as the hydrophobic blocks and statistical copolymer of 2‐(2‐methoxyethoxy)ethyl methacrylate (MEO2MA) and oligo(ethylene glycol)methacrylate (OEGMA) [P(MEO2MA‐stat‐OEGMA)] as the hydrophilic blocks are synthesized and characterized. It is found that the molar ratio of MEO2MA/OEGMA among the resulting copolymers is approximately 70/30. The degree of polymerization (DP) of P(MEO2MA‐stat‐OEGMA) block ranges from 16 to 90, and the DP of PO3G block is fixed at 35. The amphiphilic copolymers could form core‐shell micelles self‐assembly in aqueous solution at low concentrations, and the micelles are in spherical shape with sizes varying from 121 to 188 nm. With the increasing length of hydrophilic blocks, the critical micelle concentration increases from 2.15 to 13.8 mg L?1, and the lower critical solution temperature improves from 32.5 to 38.4 °C. The in vitro doxorubicin (DOX) release study shows that all DOX‐loaded micelles have a higher release rate at 37 °C than that at 25 °C. Cytotoxicity test reveals that the blank micelles are nearly nontoxic. These results indicate that the block copolymer micelles containing 100% renewably sourced PO3G can serve as a potential drug delivery carrier. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46112.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号