首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The protection of wind turbines from lightning damage is increasingly important as they increase in size and are placed in locations where access to carry out repairs may be difficult. As blades are the most common attachment point of lightning, they must be adequately protected. In addition, the passage of lightning current through wind turbine bearings introduces a risk of lightning damage to these vital components. Investigations relating to the improvement of blade lightning protection systems have been carried out, including experiments designed to address the difficult problems involved in the protection of hydraulic cylinders used for tip brake control. Work has also focused on the ability of lightning current to cause damage to wind turbine bearings. The work has been a mixture of computer simulations and experimental testing using high‐voltage and high‐current facilities. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, the electric fields in the wind turbine blades due to the lightning stepped leader are studied, and the dielectric breakdown is assessed. The developed finite element analysis (FEA) includes the full length of the leader and enables one to incorporate various uniform and non‐uniform charge density models. The lightning striking distance is calculated using the rolling sphere method. The electric field in a horizontal axis wind turbine with three blades representing Sandia 100 m All‐glass Baseline Wind Turbine Blades (SNL 100‐00) at three different lightning protection levels (LPL) is computed and compared to the dielectric breakdown strength of the blades. The dielectric breakdown strength of the blades is evaluated based on the experimental data. The results show that the tip region of the blade is the most vulnerable to the dielectric breakdown with the safety factor as low as 1.32 at LPL I. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
When a wind turbine is in normal operation, the blades are rotating, and this blade rotation may affect the process of lightning striking the wind turbine. To investigate this problem, long‐gap discharge tests are performed in this study. Moreover, a multiple physical parameter synchronous observation platform is designed for a scaled wind turbine. Long‐gap discharge tests of a static and rotary‐scaled wind turbine with blade tip‐electrode gap distances of 1 to 8 m are conducted, and the discharge paths under different gaps and wind turbine operating conditions are obtained. The characteristic parameters—arc shape upon discharge, lengths of the downward and upward leaders, blade angle at the moment of discharge, and angle of upward leader initiation—are statistically analyzed. The analysis of the aforementioned data indicates that rotation has opposite effects on the discharge characteristic parameters under short and long gap distances. According to the analysis, blade rotation reduces the space charge density of the corona discharge near the tip, which leads to an increase in the field strength near the blade tip and a decrease in the field strength away from the blade tip. Short and long gaps have different degrees of influence on discharge, which changes the difficulty of upward leader initiation at the blade tip and consequently alters the entire discharge process. The obtained results can provide a reference for the lightning protection of wind turbines.  相似文献   

4.
Petar Sarajcev  Ranko Goic 《风能》2012,15(4):627-644
A selection procedure for determining the lightning current parameters, suitable for wind turbine overvoltage protection analysis, will be presented in this paper. It will be based on the mathematical model that accounts for the wind turbine geometry, keraunic level, statistical distribution of lightning current parameters and correlation between statistical variables defining lightning current waveshape. Theoretical analysis will be backed up by the most recent propositions of parameters that define statistical distributions and thereafter applied on the concrete wind turbine example. Subsequently, obtained results would provide insight into the selection procedure for the lightning current parameters (i.e., amplitude, front duration, wave duration and polarity), associated with lightning stroke incidence to wind turbines. Emphases will be given to the modern new‐generation wind turbines. This selection procedure could be subsequently applied in the analysis (and design) of the wind turbine and wind farm overvoltage protection, with emphasis on the so‐called back‐surge phenomenon. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
P. Sarajcev  R. Goic 《风能》2015,18(9):1515-1530
This paper proposes a novel and comprehensive methodology for estimation of lightning current amplitudes, which are incident to wind turbines (WT) at lightning‐exposed locations, i.e., hilltops. The proposed methodology takes into the account the following aspects related to WT lightning incidence: (i) site topology and keraunic level, (ii)statistical nature of lightning currents, (iii) WT effective height, (iv) dependence of lightning current amplitudes on the WT effective height, (v) influence of an upward‐initiated connecting streamers interaction with a downward‐propagating step leader on the WT lightning attractiveness, and (vi) both downward and upward lightning strikes and their relative contribution in relation to the WT effective height. This methodology could be perceived as beneficial in providing relevant lightning‐current amplitudes—particularly at lightning‐endangered locations and wind farm sites characterized by high soil resistivity—for wind turbine and wind farm overvoltage protection and backsurge studies, as well as the WT grounding systems transient analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Yu Wang  Yeqiang Deng  Yilu Liu  Lu Qu  Xishan Wen  Lei Lan  Jian Wang 《风能》2019,22(8):1071-1085
The blades of a wind turbine rotate during normal operation. To investigate the influence of blade rotation on the lightning‐attracting ability of a wind turbine, a discharge test platform is designed for scaled wind turbines. The 50% impulse voltages and flash probabilities of the scaled wind turbines with gap distances of 1 to 8 m in the static and rotary conditions are determined by using the discharge test and selective discharge test. The discharge test for a single wind turbine with a gap of 1 to 2 m indicates that the breakdown voltages of the gap between the scaled turbine and electrodes increases with an increase in the blade rotation speed. However, the discharge test with a gap distance of 4 to 8 m indicates that the breakdown voltage of the fan decreases with an increase in the blade rotation speed. The test results of the scaled dual wind turbines experiment have the same rules. To explain this phenomenon, the influence of wind speed on the space‐charge distribution and electrical field intensity of corona discharge is simulated in the background of a target thundercloud. The rotation of the fan reduces the space‐charge density near the area of the blade tip, which leads to an increase in the field strength near the blade tip of the wind turbine and a decrease in the field strength away from the blade tip. This influence varies in short and long air gap, resulting in opposite relationships between discharge voltage and distance from the tip of the turbine. The results can provide a reference for the lightning protection of wind turbines.  相似文献   

7.
Recent large eddy simulations have led to improved parameterizations of the effective roughness height of wind farms. This effective roughness height can be used to predict the wind velocity at hub‐height as function of the geometric mean of the spanwise and streamwise turbine spacings and the turbine loading factors. Recently, Meyers and Meneveau used these parameterizations to make predictions for the optimal wind turbine spacing in infinitely large wind farms. They found that for a realistic cost ratio between the turbines and the used land surface, the optimal turbine spacing may be considerably larger than that used in conventional wind farms. Here, we extend this analysis by taking the length of the wind farm, i.e. the number of rows in the downstream direction into account and show that the optimal turbine spacing strongly depends on the wind farm length. For small to moderately sized wind farms, the model predictions are consistent with spacings found in operational wind farms. For much larger wind farms, the extended optimal spacing found for infinite wind farms is confirmed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Wind farms are generally designed with turbines of all the same hub height. If wind farms were designed with turbines of different hub heights, wake interference between turbines could be reduced, lowering the cost of energy (COE). This paper demonstrates a method to optimize onshore wind farms with two different hub heights using exact, analytic gradients. Gradient‐based optimization with exact gradients scales well with large problems and is preferable in this application over gradient‐free methods. Our model consisted of the following: a version of the FLOw Redirection and Induction in Steady‐State wake model that accommodated three‐dimensional wakes and calculated annual energy production, a wind farm cost model, and a tower structural model, which provided constraints during optimization. Structural constraints were important to keep tower heights realistic and account for additional mass required from taller towers and higher wind speeds. We optimized several wind farms with tower height, diameter, and shell thickness as coupled design variables. Our results indicate that wind farms with small rotors, low wind shear, and closely spaced turbines can benefit from having two different hub heights. A nine‐by‐nine grid wind farm with 70‐meter rotor diameters and a wind shear exponent of 0.08 realized a 4.9% reduction in COE by using two different tower sizes. If the turbine spacing was reduced to 3 diameters, the reduction in COE decreased further to 11.2%. Allowing for more than two different turbine heights is only slightly more beneficial than two heights and is likely not worth the added complexity.  相似文献   

9.
Blade condition monitoring systems with fiber‐optic sensors attract much attention because they are resistant to lightning strikes, a major issue with increasing blade lengths. However, fiber‐optic sensor systems are more complex and more expensive than their electronic counterparts. We describe a new blade condition monitoring system, which combines the lightning safety of optical fibers with the reliability and cost‐effectiveness of electronic sensors. The optical fibers transport data from the blades to the hub, and in addition, they provide the electrical power for operating the sensor units in the blades. To achieve full protection against lightning‐induced electromagnetic fields, an appropriate shielding of the sensor units is required. We present results on the reliability of a newly developed prototype based on optically powered sensors. In a field trial, the unit monitored successfully the blade vibrations of a 1.5 MW wind turbine for a period of 23 months. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The recently developed k?fP eddy‐viscosity model is applied to one on‐shore and two off‐shore wind farms. The results are compared with power measurements and results of the standard k? eddy‐viscosity model. In addition, the wind direction uncertainty of the measurements is used to correct the model results with a Gaussian filter. The standard k? eddy‐viscosity model underpredicts the power deficit of the first downstream wind turbines, whereas the k?fP eddy‐viscosity model shows a good agreement with the measurements. However, the difference in the power deficit predicted by the turbulence models becomes smaller for wind turbines that are located further downstream. Moreover, the difference between the capability of the turbulence models to estimate the wind farm efficiency reduces with increasing wind farm size and wind turbine spacing. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Most modern high-power wind turbines are horizontal axis type with straight twisted blades. Upgrading power and performance of these turbines is considered a challenge. A recent trend towards improving the horizontal axis wind turbine (HAWT) performance is to use swept blades or sweep twist adaptive blades. In the present work, the effect of blade curvature, sweep starting point and sweep direction on the wind turbine performance was investigated. The CFD simulation method was validated against available experimental data of a 0.9?m diameter HAWT. The wind turbine power and thrust coefficients at different tip speed ratios were calculated. Flow field, pressure distribution and local tangential and streamwise forces were also analysed. The results show that the downstream swept blade has the highest Cp value at design point as compared with the straight blade profile. However, the improvement in power coefficient is accompanied by a thrust increase. Results also show that the best performance is obtained when the starting blade sweeps at 25% of blade radius for different directions of sweep.  相似文献   

12.
Some wind turbines have exceeded their nominal design service life and are continuing their operation with periodic inspections and maintenance. In the case of rotor blades, the reliability of the inspection is very limited because of the blade structure that comprises laminates and sandwich structures, which are very difficult to monitor. For this reason, wind farm owners are searching for technologies or approaches that will guarantee a safe operation of their wind turbines after the design life has elapsed. The main objective of this paper was to investigate whether detection of ageing of wind turbine blades using deflection as key parameter is feasible using commercial equipment. The paper is divided in three phases. In phase 1, the effect of ageing on a new UD‐0° glass fibre with high moduli was obtained. Using these results and bibliography data, a theoretical study was performed in phase 2 to determine the magnitude of blade deflection along its lifetime due to material ageing. Finally, in phase 3, in‐field deflection measurements where performed on a wind turbine blade to evaluate the utility and limitations of commercial equipment for the detection of blade ageing. It was concluded that material ageing could result in an increase in blade deflection under self‐weight that can be detected using commercial measurement equipment. These results can be used by wind farm owners in their O&M strategies to monitor blades over time and decide whether they should be repaired or replaced.  相似文献   

13.
This paper investigates wake effects on load and power production by using the dynamic wake meander (DWM) model implemented in the aeroelastic code HAWC2. The instationary wind farm flow characteristics are modeled by treating the wind turbine wakes as passive tracers transported downstream using a meandering process driven by the low frequent cross‐wind turbulence components. The model complex is validated by comparing simulated and measured loads for the Dutch Egmond aan Zee wind farm consisting of 36 Vestas V90 turbine located outside the coast of the Netherlands. Loads and production are compared for two distinct wind directions—a free wind situation from the dominating southwest and a full wake situation from northwest, where the observed turbine is operating in wake from five turbines in a row with 7D spacing. The measurements have a very high quality, allowing for detailed comparison of both fatigue and min–mean–max loads for blade root flap, tower yaw and tower bottom bending moments, respectively. Since the observed turbine is located deep inside a row of turbines, a new method on how to handle multiple wakes interaction is proposed. The agreement between measurements and simulations is excellent regarding power production in both free and wake sector, and a very good agreement is seen for the load comparisons too. This enables the conclusion that wake meandering, caused by large scale ambient turbulence, is indeed an important contribution to wake loading in wind farms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Wind turbines are often very high structures that are usually installed in high keraunic level areas. The keraunic level is the number of storm days per year. Therefore, wind farms are very vulnerable to lightning discharge. The damage due to a lightning strike can be reduced if the high current is quickly conducted to the ground.To date, wind turbine grounding system designs have been based on prior experience, without accurately studying transient grounding system behavior.In this work, typical wind farm grounding system geometries are analyzed in the context of lightning strikes.  相似文献   

15.
In order to study the effect of vertical staggering in large wind farms, large eddy simulations (LES) of large wind farms with a regular turbine layout aligned with the given wind direction were conducted. In the simulations, we varied the hub heights of consecutive downstream rows to create vertically staggered wind farms. We analysed the effect of streamwise and spanwise turbine spacing, the wind farm layout, the turbine rotor diameter, and hub height difference between consecutive downstream turbine rows on the average power output. We find that vertical staggering significantly increases the power production in the entrance region of large wind farms and is more effective when the streamwise turbine spacing and turbine diameter are smaller. Surprisingly, vertical staggering does not significantly improve the power production in the fully developed regime of the wind farm. The reason is that the downward vertical kinetic energy flux, which brings high velocity fluid from above the wind farm towards the hub height plane, does not increase due to vertical staggering. Thus, the shorter wind turbines are effectively sheltered from the atmospheric flow above the wind farm that supplies the energy, which limits the benefit of vertical staggering. In some cases, a vertically staggered wind farm even produced less power than the corresponding non vertically staggered reference wind farm. In such cases, the production of shorter turbines is significantly negatively impacted while the production of the taller turbine is only increased marginally.  相似文献   

16.
Quantification of the performance degradation on the annual energy production (AEP) of a wind farm due to leading-edge (LE) erosion of wind turbine blades is important to design cost-effective maintenance plans and timely blade retrofit. In this work, the effects of LE erosion on horizontal axis wind turbines are quantified using infrared (IR) thermographic imaging of turbine blades, as well as meteorological and SCADA data. The average AEP loss of turbines with LE erosion is estimated from SCADA and meteorological data to be between 3% and 8% of the expected power capture. The impact of LE erosion on the average power capture of the turbines is found to be higher at lower hub-height wind speeds (peak around 50% of the turbine rated wind speed) and at lower turbulence intensity of the incoming wind associated with stable atmospheric conditions. The effect of LE erosion is investigated with IR thermography to identify the laminar to turbulent transition (LTT) position over the airfoils of the turbine blades. Reduction in the laminar flow region of about 85% and 87% on average in the suction and pressure sides, respectively, is observed for the airfoils of the investigated turbines with LE erosion. Using the observed LTT locations over the airfoils and the geometry of the blade, an average AEP loss of about 3.7% is calculated with blade element momentum simulations, which is found to be comparable with the magnitude of AEP loss estimated through the SCADA data.  相似文献   

17.
Wind turbine blades are subject to lightning strikes, which may result in severe damage of the blade materials. The withstanding performance of different blade materials needs to be classified in order to maximize their operational safety. Lightning impulse voltages were applied to model blades with different core materials (polyvinyl chloride [PVC], polyethylene terephthalate [PET], and balsa wood) to characterize the breakdown points (electrically vulnerable areas) on the blades. It has been found that the areas subjected to puncturing are located in the back part (toward the trailing edge) of the sandwich structure, especially at locations close to the main beam. Model blades made of balsa wood are more susceptible to puncturing breakdown than PVC and PET. High impulse currents were imposed at the most probably stricken spots in the impulse voltage tests to compare the severity of damage for PVC, PET, and balsa wood in an attempt to understand the thermal effect of lightning discharge following the final jump. Results show that balsa wood is most resistive to while PVC suffers most damage due to the thermal impact of lightning. Molecular simulation of the chemical degradation process and thermal gas production dynamics was performed at atomic level to explain the damage mechanisms of the three core materials. The performance data of the blade core materials against lightning strike obtained in the present work provide strong guidance on the optimal design of wind turbine blade structure and selection of blade core material.  相似文献   

18.
Lightning strikes are a major threat to the secure operation of wind turbines. When lightning strikes a wind turbine, the lightning current flows through the blade and the tower and then the induced overvoltage will damage sensors and signal cables. In this study, a comprehensive transient surge impedance model of a wind turbine was built to analyze the causes of the overvoltage in the signal cable. The model that studies the overvoltage caused by both capacitive coupling and electromagnetic induction included the blade, nacelle, tower, signal cable, power cable, and grounding system using π networks. The influences of the cable shielding layer, soil resistivity, and lightning current waveform on the overvoltage were also analyzed. Then, 2 overvoltage suppression measures, ie, grounding at 2 ends of the outer shielding layer and installation of a surge protective device, were tested. Results show that a signal cable with double shielding layers reduced the overvoltage in the signal cable, and higher soil resistivity resulted in increased voltage on the tower base. In addition, the peak and the front time of the lightning current significantly influenced the overvoltage on the tower and the cable. The effectiveness of the 2 suppression measures was also verified. The calculation results will provide guidance for a reasonable lightning protection design.  相似文献   

19.
This paper presents results out of investigations of the DEBRA‐25 wind turbine blades. Almost unique in the history of modern wind energy, these blades were in operation for 18 years next to a weather station and were investigated afterward. Therefore, the loads experienced in the operational life could be post‐processed accurately with the measured data of the weather station and the turbine. The blades are made of materials that are similar with today's wind turbines. Furthermore, intensive laboratory tests and free field tests have been carried out, and all load assumptions and data and results are still available today. The results include experimental investigations on the moisture content of the load‐carrying material, static and fatigue behavior of the material, the relaxation of the coupling joints, the natural frequencies of the blade and a full scale static blade test. It is shown that the structural performance of the DEBRA‐25 service blades is comparable with modern wind turbine blades. Although some damage was found by visual inspection, the service blade of the DEBRA‐25 showed excellent mechanical behavior in the full scale blade test. Only small changes of the edgewise eigenfrequencies were detected. The pre‐tensioning forces of the IKEA bolts, where the two blade parts are connected, were measured and were still adequate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
It is well accepted that the wakes created by upstream turbines significantly impact on the power production and fatigue loading of downstream turbines and that this phenomenon affects wind farm performance. Improving the understanding of wake effects and overall efficiency is critical for the optimisation of layout and operation of increasingly large wind farms. In the present work, the NREL 5‐MW reference turbine was simulated using blade element embedded Reynolds‐averaged Navier‐Stokes computations in sheared onset flow at three spatial configurations of two turbines at and above rated flow speed to evaluate the effects of wakes on turbine performance and subsequent wake development. Wake recovery downstream of the rearward turbine was enhanced due to the increased turbulence intensity in the wake, although in cases where the downstream turbine was laterally offset from the upstream turbine this resulted in relatively slower recovery. Three widely used wake superposition models were evaluated and compared with the simulated flow‐field data. It was found that when the freestream hub‐height flow speed was at the rated flow speed, the best performing wake superposition model varied depending according to the turbine array layout. However, above rated flow speed where the wake recovery distance is reduced, it was found that linear superposition of single turbine velocity deficits was the best performing model for all three spatial layouts studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号