首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
  [目的]  当前国内海上风电项目在投标阶段通常采用分步迭代设计(Sequentially Iterated Approach,缩写为SIA)方法和流程,风机厂家给出塔架设计并担保工程量,但最终得到的设计往往是塔架最轻的局部最优设计而不是整体支撑结构最轻的设计。为了降低海上风电平准化度电成本(Levelized Cost of Energy,缩写为LCoE),提出了整体优化设计(Integrated Design Optimization,缩写为IDO)的流程和优化列式,建议在海上风电项目招标阶段业主可要求风机厂家联合设计院编制并提交整体设计投标方案,把设计域扩大到整体支撑结构进行优化设计,寻找全局最优的设计。  [方法]  为了说明IDO方法和流程的优势,以某海上单桩基础项目为例,分别计算不同塔架直径和单桩基础直径的共18种设计方案,比较了采用SIA方法与IDO方法获得的结果。  [结果]  结果表明:IDO相比SIA可在塔架质量增加较小时大幅减少整体支撑结构的质量。  [结论]  在今后的海上风电工程项目应用中,可通过IDO优化设计方法和流程给出整体支撑结构最轻的设计方案,为降低海上风电LCoE提供可行的解决方案。  相似文献   

2.
J. M. Jonkman  D. Matha 《风能》2011,14(4):557-569
This work presents a comprehensive dynamic–response analysis of three offshore floating wind turbine concepts. Models were composed of one 5 MW turbine supported on land and three 5 MW turbines located offshore on a tension leg platform, a spar buoy and a barge. A loads and stability analysis adhering to the procedures of international design standards was performed for each model using the fully coupled time domain aero‐hydro‐servo‐elastic simulation tool FAST with AeroDyn and HydroDyn. The concepts are compared based on the calculated ultimate loads, fatigue loads and instabilities. The loads in the barge‐supported turbine are the highest found for the three floating concepts. The differences in the loads between the tension leg platform–supported turbine and spar buoy–supported turbine are not significant, except for the loads in the tower, which are greater in the spar system. Instabilities in all systems also must be resolved. The results of this analysis will help resolve the fundamental design trade‐offs between the floating‐system concepts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
R. Damiani  A. Ning  B. Maples  A. Smith  K. Dykes 《风能》2017,20(4):731-747
Challenging bathymetry and soil conditions of future US offshore wind power plants might promote the use of multimember, fixed‐bottom structures (or ‘jackets’) in place of monopiles. Support structures affect costs associated with the balance of system and operation and maintenance. Understanding the link between these costs and the main environmental design drivers is crucial in the quest for a lower levelized cost of energy, and it is the main rationale for this work. Actual cost and engineering data are still scarce; hence, we evaluated a simplified engineering approach to tie key site and turbine parameters (e.g. water depth, wave height, tower‐head mass, hub height and generator rating) to the overall support weight. A jacket‐and‐tower sizing tool, part of the National Renewable Energy Laboratory's system engineering software suite, was utilized to achieve mass‐optimized support structures for 81 different configurations. This tool set provides preliminary sizing of all jacket components. Results showed reasonable agreement with the available industry data, and that the jacket mass is mainly driven by water depth, but hub height and tower‐head mass become more influential at greater turbine ratings. A larger sensitivity of the structural mass to wave height and target eigenfrequency was observed for the deepest water conditions (>40 m). Thus, techno‐economic analyses using this model should be based on accurate estimates of actual metocean conditions and turbine parameters especially for deep waters. The relationships derived from this study will inform National Renewable Energy Laboratory's offshore balance of system cost model, and they will be used to evaluate the impact of changes in technology on offshore wind lower levelized cost of energy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Interest in the exploitation of offshore wind resources using floating wind turbines has increased. Commercial development of floating horizontal axis wind turbines (FHAWTs) is emerging because of their commercial success in onshore and near‐shore areas. Floating vertical axis wind turbines (FVAWTs) are also promising because of their low installation and maintenance costs. Therefore, a comparative study on the dynamic responses of FHAWTs and FVAWTs is of great interest. In the present study, a FHAWT employing the 5MW wind turbine developed by the National Renewable Energy Laboratory (NREL) and a FVAWT employing a Darrieus rotor, both mounted on the OC3 spar buoy, were considered. An improved control strategy was introduced for FVAWTs to achieve an approximately constant mean generator power for the above rated wind speeds. Fully coupled time domain simulations were carried out using identical, directional aligned and correlated wind and wave conditions. Because of different aerodynamic load characteristics and control strategies, the FVAWT results in larger mean tower base bending moments and mooring line tensions above the rated wind speed. Because significant two‐per‐revolution aerodynamic loads act on the FVAWT, the generator power, tower base bending moments and delta line tensions show prominent two‐per‐revolution variation. Consequently, the FVAWT suffers from severe fatigue damage at the tower bottom. However, the dynamic performance of the FVAWT could be improved by increasing the number of blades, using helical blades or employing a more advanced control strategy, which requires additional research. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Micro‐scale Reynolds‐averaged Navier‐Stokes (RANS) simulations of the neutral atmospheric boundary layer (ABL) over complex terrain and a comparison of the results with conditionally averaged met‐tower data are presented. A robust conditional sampling procedure for the meteorological tower (met‐tower) data to identify near‐neutral conditions based on a criterion for the turbulence intensity is developed. The conditionally averaged wind data on 14 met‐towers are used for the model validation. The ABL flow simulations are conducted over complex terrain which includes a prominent hill using the OpenFOAM‐based simulator for on/offshore wind farm applications (SOWFA) with the k?? and the SST k?ω turbulence models. The discretization of the production term in the transport equation for the turbulent kinetic energy (TKE) is modified to greatly reduce the commonly observed nonphysical near surface TKE peak. The driving inflow is generated through an iterative approach using a precursor method to reproduce the measured wind statistics at the reference tower. Both of the RANS models are able to capture the flow behavior windward of the hill. The SST k?ω model predicts more intense flow separation than the k?? model downstream of the steepest sections of the hill. The wind statistics predicted at the location of the met‐towers by both of the RANS models are fairly consistent. Overall, the comparisons of the direction, mean, and standard deviation of the wind between the simulations and the tower data show reasonable agreement except for the differences of the mean wind speeds at four met‐towers located closer to the main ridge of the hill in a region of strong terrain variations.  相似文献   

6.
We define and demonstrate a procedure for carrying out wind turbine load validation based on measurements from nacelle‐mounted scanning lidars. Two coherent Doppler lidar systems, a pulsed lidar and a continuous‐wave lidar, are mounted on a 2.3‐MW wind turbine equipped with load measurement sensors. Wind measurements from a meteorological mast mounted at 2.5 rotor diameters distance are used as reference. The study shows how lidar measurements are processed and applied as inputs to aeroelastic load simulations, and the results are then compared with simulations where the wind inputs have been determined using the meteorological mast data in compliance with the IEC61400‐13 standard. For the majority of simulation cases considered, the use of nacelle‐mounted lidar measurements results in load estimation uncertainties lower or equal to those that are based on measurements from cup anemometers on the mast. These results demonstrate the usefulness of nacelle‐mounted lidars as tools for carrying out load validation without the need of meteorological masts.  相似文献   

7.
针对风力发电机组运行环境恶劣,需要对风机的塔底控制柜和机舱控制柜等关键部位进行多点温度采集,根据单总线多点温度监测系统的设计方案,采用TMS320F2812数字处理器为核心,设计开发了基于CAN总线的在线温度监测系统。将该套系统应用于东北某风力发电厂后发现系统的稳定性、实时和可靠性较好。  相似文献   

8.
  目的  国内海上风电项目的业主在招主机标时,对风机厂商提供的基础顶载荷和塔架质量提出要求,在招设计标时很少对设计院提供的基础质量提出要求;详细设计阶段时风机厂商和设计院分别对塔架和基础进行设计,因此通常难以得到塔架和基础总质量最小的全局最优设计。  方法  提出了海上风机塔架和单桩一体化试验设计方法,通过对某海上风电项目进行试验设计得到多个不同塔架构型、塔底和单桩直径的设计方案,并通过载荷计算、塔架和单桩设计迭代优化得到相应的基础顶载荷、塔架质量和单桩质量等结果。  结果  研究表明:基础顶载荷或塔架质量最小的方案不是塔架和单桩总质量最小的方案。通过试验设计方法可以给出单桩和塔架总质量最小的最优设计。  结论  研究成果表明,在设计中采用一体化试验设计方法寻找塔架和单桩总质量最小的全局最优设计是降低海上风电度电成本的有效方法。业主将制定塔架和基础总造价最小的招标规则,要求采用一体化试验设计方案找到全局最优设计。  相似文献   

9.
以NREL 5 MW近海风力机为研究对象,基于Kaimal平稳随机风速谱模型建立风力机全域湍流风,同时采用Matlock模型计算动态冰力,模拟风力机所受冰激振动,研究在风-冰联合环境载荷作用下近海风力机动力学响应。结果表明:冰激振动极大地加剧塔顶各向振动;频域上,冰激振动影响主要集中于塔架1阶固有频率和叶片1阶摆振频率,且相应峰值与冰厚呈正相关关系;受冰激振动作用,塔架各向剪切力明显增加,且塔顶和塔基附近增幅大于塔身中部。  相似文献   

10.
Accurate prediction of long‐term ‘characteristic’ loads associated with an ultimate limit state for design of a 5‐MW bottom‐supported offshore wind turbine is the focus of this study. Specifically, we focus on predicting the long‐term fore–aft tower bending moment at the mudline and the out‐of‐plane bending moment at the blade root of a monopile‐supported shallow‐water offshore wind turbine. We employ alternative probabilistic predictions of long‐term loads using inverse reliability procedures in establishing the characteristic loads for design. Because load variability depends on the environmental conditions (defining the wind speed and wave height), we show that long‐term predictions that explicitly account for such load variability are more accurate, especially for environmental states associated with above‐rated wind speeds and associated wave heights. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
  [目的]  随着国家对于海上风电竞价上网指导意见的出台,降低开发成本的需求越来越迫切,急需通过技术创新降低成本。而海上塔架和基础的成本,显著影响着海上风电的平准化度电成本LCoE(Levelized Cost of Energy),直接决定着海上风电项目的竞争力。  [方法]  为了有效降低塔架基础的成本,文章提出了基于数字化云平台iDO(integrated Design Offshore)的一体化设计方法,对极端极限状态ULS工况下结构的静强度、疲劳极限状态FLS工况下结构的疲劳损伤进行了数值计算分析。为验证一体化设计方法在降低海上风电塔架基础成本的效果,文章针对两个实际工程项目,基于iDO云平台和传统分步迭代法SIA(Sequentially Iterated Approach)进行设计分析,对比ULS工况和FLS工况下的结构安全衡准指标。  [结果]  计算结果表明:ULS和FLS工况下,基于iDO云平台的一体化设计方法比SIA在结构强度、变形、疲劳损伤等指标有较大幅度下降,可显著优化塔架基础结构,降低结构重量,减小整个支撑结构成本,降低海上风电的LCoE。  [结论]  在实际海上风电工程项目应用中,基于iDO云平台的一体化设计方法可有效降低塔架基础结构成本,从而提高海上风电项目的竞争力,同时可对未来海上风电支撑结构优化设计提供借鉴。  相似文献   

12.
Kevin B. Howard  Michele Guala 《风能》2016,19(8):1371-1389
Data collected at the Eolos wind research facility and in the Saint Anthony Falls Laboratory atmospheric boundary layer wind tunnel are used to study the impact of turbulent inflow conditions on the performance of a horizontal axis wind turbine on flat terrain. The Eolos test facility comprises a 2.5MW Clipper Liberty C96 wind turbine, a meteorological tower and a WindCube LiDAR wind profiler. A second set of experiments was completed using particle image velocimetry upwind and in a wake of a miniature turbine in the wind tunnel to complement LiDAR measurements near the Eolos turbine. Joint statistics, most notably temporal cross‐correlations between wind velocity at different heights and turbine performance, are presented and compared at both the laboratory and field scales. The work (i) confirms that the turbine exerts a blockage effect on the mean flow and (ii) suggests a key, specific elevation, above hub height, where the incoming velocity signal is statistically most relevant to turbine operation and control. Wind tunnel measurements confirm such indication and suggest that hub height velocity measurements are optimal for wind preview and/or as input for active control strategies in aligned turbine configurations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
为更精确研究桁架式大型海上风力机在地震载荷作用下的结构动力学响应,建立桩土模型,描述土体物理性质与桩-土间的相互作用,以桁架式支撑结构的美国可再生能源实验室(NREL)5 MW海上风力机为研究对象,建立有限元模型并分析在湍流风与地震联合作用下的动力学响应.结果 表明:相较于湍流风,地震作用对桁架式海上风力机动力学响应的...  相似文献   

14.
The stability conditions in the atmospheric boundary layer, the intensity of the wind speeds and consequently the energy potential available in offshore conditions are highly influenced by the distance from the coastline and the differences between the air and sea temperatures. This paper presents a preliminary research undertook to study the offshore wind and temperature vertical profiles at the North-West of the Yucatán Peninsula coast. Ten minute averages were recorded over approximately 2 years from sensors installed at two different heights on a communication tower located at 6.65 km from the coastline. The results have shown that the offshore wind is thermally driven by differential heating of land and sea producing breeze patterns which veer to blow parallel to the coast under the action of the Coriolis force. To investigate further, a dataset of hourly sea surface temperatures derived from GEOS Satellite thermal maps was combined with the onsite measured data to study its effect on the vertical temperature profile. The results suggested largely unstable conditions and the potentially development of a shallow Stable Internal Boundary Layer which occurs when warm air from the land advects over the cold sea.  相似文献   

15.
Mark L. Brodersen  Jan Høgsberg 《风能》2016,19(12):2223-2238
The magnitude of tower vibrations of offshore wind turbines is a key design driver for the feasibility of the monopile support structure. A novel control concept for the damping of these tower vibrations is proposed, where viscous‐type hybrid dampers are installed at the bottom of the wind turbine tower. The proposed hybrid damper consists of a passive viscous dashpot placed in series with a load cell and an active actuator. By integrated force feedback control of the actuator motion, the associated displacement amplitude over the viscous damper can be increased compared with the passive viscous case, hereby significantly increasing the feasibility of viscous dampers acting at the bottom of the wind turbine tower. To avoid drift in the actuator displacement, a filtered time integration of the measured force signal is introduced. Numerical examples demonstrate that the filtered time integration control leads to performance similar to that of passive viscous damping and substantial amplification of the damper deformation without actuator drift. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Wind measurements were performed with the UTD mobile LiDAR station for an onshore wind farm located in Texas with the aim of characterizing evolution of wind‐turbine wakes for different hub‐height wind speeds and regimes of the static atmospheric stability. The wind velocity field was measured by means of a scanning Doppler wind LiDAR, while atmospheric boundary layer and turbine parameters were monitored through a met‐tower and SCADA, respectively. The wake measurements are clustered and their ensemble statistics retrieved as functions of the hub‐height wind speed and the atmospheric stability regime, which is characterized either with the Bulk Richardson number or wind turbulence intensity at hub height. The cluster analysis of the LiDAR measurements has singled out that the turbine thrust coefficient is the main parameter driving the variability of the velocity deficit in the near wake. In contrast, atmospheric stability has negligible influence on the near‐wake velocity field, while it affects noticeably the far‐wake evolution and recovery. A secondary effect on wake‐recovery rate is observed as a function of the rotor thrust coefficient. For higher thrust coefficients, the enhanced wake‐generated turbulence fosters wake recovery. A semi‐empirical model is formulated to predict the maximum wake velocity deficit as a function of the downstream distance using the rotor thrust coefficient and the incoming turbulence intensity at hub height as input. The cluster analysis of the LiDAR measurements and the ensemble statistics calculated through the Barnes scheme have enabled to generate a valuable dataset for development and assessment of wind farm models.  相似文献   

17.
The first offshore wind farm became operational in 1991 in Vindeby, Denmark. By 2008, large offshore wind farms had been built in Denmark, the UK, the Netherlands, Ireland, and Sweden with a total capacity of 1200 MW. Offshore wind farms have the potential to generate a significant fraction of US electrical consumption, but the US currently lacks offshore wind farms and is still developing a regulatory system. At the state level only Texas has a leasing system for offshore wind. Since all offshore land is the property of the state and cannot be legally developed without a lease from the government, these absences have stalled development. We review and compare regulatory and leasing systems developed in Europe and the US to inform a discussion of the major issues associated with the development of an offshore leasing and regulatory system. We focus on the tradeoffs between encouraging a sustainable energy source and ensuring environmental protection and public compensation. We conclude that there are likely multiple effective methods of regulation.  相似文献   

18.
The investigation of wind resource at higher heights is very crucial in planning wind power project. Normally, this involves the installation of a high and costly meteorological mast with a cup anemometer and wind vanes. This investigation uses the new ground-based remote-sensing technique Light Detection and Ranging (LiDAR) to investigate the wind resource at higher heights. This paper describes the LiDAR technology principle and examines the potential of LiDAR measurement to estimate the wind resource at higher heights by conducting a measurement campaign at Tamil Nadu, India. The wind statistics were determined using the 10?min average time-series wind data monitored by ZephIR LiDAR. These include the Weibull parameters, daily mean wind speed, wind power density, wind energy density, vertical wind speed profile and capacity factor. The investigation reveals that the vertical wind speed profile measured from the LiDAR system has approximate closer values to the standard meteorological measurement.  相似文献   

19.
P. Towers  B. Ll. Jones 《风能》2016,19(1):133-150
The use of light detection and ranging (LiDAR) instruments offer many potential benefits to the wind energy industry. Although much effort has been invested in developing such instruments, the fact remains that they provide limited spatio‐temporal velocity measurements of the wind field. Moreover, LiDAR measurements only provide the radial (line‐of‐sight) velocity component of the wind, making it difficult to precisely determine wind magnitude and direction, owing to the so‐called ‘cyclops’ dilemma. Motivated by a desire to extract more information from typical LiDAR data, this paper aims to show that it is possible to accurately estimate, in a real‐time fashion, the radial and tangential velocity components of the wind field. We show how such reconstructions can be generated through the synthesis of an unscented Kalman filter that employs a low‐order dynamic model of the wind to estimate the unmeasured velocities within the wind field, using repeated measurement updates from typical nacelle‐mounted LiDAR instruments. This approach is validated upon synthetic data generated from large eddy simulations of the atmospheric boundary layer. The accuracy of the wind field estimates are validated across a variety of beam configurations, look directions, atmospheric stabilities and imperfect measurement conditions. The main outcome of this paper is a technique that offers the potential to accurately reconstruct wind fields from LiDAR data, overcoming the cyclops dilemma in the process. The ultimate aim of this research is to provide reliable gust detection warning systems to offshore construction workers, in addition to accurate wind field estimates for use in preview turbine pitch control systems. © 2014 The Authors. Wind Energy published by John Wiley & Sons Ltd.  相似文献   

20.
Wake losses are perceived as one of the largest uncertainties in energy production estimates (EPEs) for new offshore wind projects. In recent years, significant effort has been invested to improve the accuracy of wake models. However, it is still common for a standard wake loss uncertainty of 50% to be assumed in EPEs for new offshore wind farms. This paper presents a body of evidence to support reducing that assumed uncertainty. It benchmarks the performance of four commonly used wake models against production data from five offshore wind farms. Three levels of evidence are presented to substantiate the performance of the models:
  • Case studies, i.e. efficiencies of specific turbines under specific wind conditions;
  • Array efficiencies for the wind farm as a whole for relatively large bins of wind speed and direction; and
  • Validation wake loss, which corresponds to the overall wake loss within the proportion of the annual energy production where validation is possible.
The most important result for predicting annual energy production is the validation wake loss. The other levels of evidence demonstrate that this result is not unduly reliant on cancellation of errors between wind speed and/or wind direction bins. All of the root‐mean‐squared errors in validation wake loss are substantially lower than the 50% uncertainty commonly assumed in EPEs; indeed, even the maximum errors are below 25%. It is therefore concluded that there is a good body of evidence to support reducing this assumed uncertainty substantially, to a proposed level of 25%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号