首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brown trout (Salmo trutta) were surveyed by mark recapture in a 200‐m section of Gilmore Creek, Minnesota, annually during fall 1989–2013 to assess long‐term trends in abundance. Young‐of‐year (YOY) fish comprised >68% of the population annually, but age 3 and older fish were present in 23 of 25 years. Trout abundance varied irregularly, peaking every 4 to 6 years. Fall densities of YOY brown trout were positively correlated with median annual stream discharge but inversely correlated with 10% exceedance discharge in May, at a nearby gaged stream. Changes in brown trout abundances were synchronized with those of trout in 2 nearby streams. Annual mortality rates (mean = 74%) and sizes of YOY trout were correlated with YOY densities, with high densities (>1.0 fish/m2) producing small size during fall and high cohort mortality. High YOY densities resulted in low proportional size structure‐quality (PSSQ, <20%) 1 and 2 years later. If similar brown trout population dynamics occur in other streams within the region, interpretation of short‐term studies of brown trout (e.g., regulation evaluations, creel surveys, population response to habitat improvement, seasonal movements, and growth rates) may be confounded.  相似文献   

2.
Hydropower is an important tool in the struggle for low-emission power production. In the Nordic countries, hydropower operating conditions are expected to change and work more in conjunction with intermittent power production. This in turn might increase the amount of hydropeaking events in the reaches downstream of hydropower plants. The current work investigates the influence of highly flexible, high-frequency hydropeaking on the hydrodynamics in the downstream reach. By quantifying four different dynamic stages in the study reach, the influence of the hydropeaking frequencies was investigated in the bypass reach of the Stornorrfors hydropower plant in the river Umeälven in northern Sweden. The hydrodynamics in the study reach were numerically modelled using the open source solver Delft3D. Eight different highly flexible future hydropeaking scenarios, varying from 12 to 60 flow changes per day, were considered. A method for identifying four hydropeaking stages—dewatering, dynamic, alternating and uniform —was introduced. The hydropeaking frequency directly decided the stage in most of the study reach. Furthermore, a Fourier analysis showed a significant difference between the stages and their corresponding power spectra. The classification of stages put forward in this work provides a novel, simple method to investigate the hydrodynamics due to hydropeaking in a river reach.  相似文献   

3.
In this study, we modelled idealized stream reaches using empirical hydrodynamic and bioenergetic parameters to predict how rainbow trout production depends on physical and biological variations across a downstream gradient, and we compared these downstream effects in a low and high‐gradient stream reach. We found that longitudinal production potential (i.e. net rate of energetic intake per 100 m of stream length) generally increased with increasing stream size when stream gradient was low. This was not the case, however, for high‐gradient streams, wherein maximum longitudinal production potential was associated with middle or low stream size (QMAD = 2.5 to 25 m3 s?1). Areal production potential (net rate of energetic intake per m2 of wetted stream bed) reached a maximum at low stream size (QMAD = 2.5 m3 s?1) with both high and low gradients. We also showed that high stream temperature and low drift density could potentially cause adult rainbow trout to be excluded from stream reaches with high flow. The models presented here have a stronger mechanistic basis for predicting fish production across heterogeneous stream environments and provide more nuanced predictions in response to variation in environmental features than their physical habitat‐based predecessors. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
There is a growing need to develop quantitative relationships between specific components of river flow and the behavioural responses of fishes. Given this, we tested for an effect of hydrologic parameters on axial swimming muscle electromyograms of bull trout (Salvelinus confluentus) in a large hydropeaking river (river discharge ranging from 0 to 1790 m3/s) while controlling for other exogenous factors such as temperature and light intensity. Hourly mean discharge had a significant positive effect (R2 = 0.13–0.31; depending on the distance from the dam) on swimming muscle activity. Within‐hour changes in river flow from 0 to 1045 m3/s did not elicit a hyperactive response in bull trout. When a subset of electromyogram transmitters were calibrated to swimming speed, we found there were periods, across a range of river discharges, when bull trout were not actively beating their tails—a behaviour documented in some bottom‐dwelling species associated with moving water. Not including these periods of rest, bull trout swam at median hourly speeds of 0.53 body lengths per second. Understanding fish behaviour in the context of their physical environment may help explain population‐level responses to hydrologic change. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Hydropeaking presents one of the large impacts on river ecology and is gaining importance because of an increasinlgy volatile energy market with high portions of new renewable energies dependent on local climate conditions. This study presents the application of a fuzzy logic model for the investigation of macrobenthic habitats under hydropeaking conditions in the Norwegian river Surna. Preference data of the three taxa Baetis rhodani, Hydroptila spp. and Allogamus auricollis with distinctively different habitat requirements related to near‐bottom flow forces (high/low forces, and narrow range) are used. These data are transferred into the multivariate fuzzy rule‐based physical habitat model Computer Aided Simulation of Instream flow and Riparia in order to integrate water depth and river bed substrate as additional parameters. Permanently available habitats (persistent habitats) are assessed for different scenarios of hydropeaking operation. It is found that the amount of persistently high‐quality habitat is closely related to the size and range of fluctuations in hydraulic conditions occuring during hydropeaking events. Effects are much more distinct for species with a narrow range of hydraulic preference. The integration of water depth in the simulations has a noticable impact on the amount and quality of predicted habitats. Substrate conditions in the investigation site are homogeneous and, in the specific case considered, do not have a significant impact. The study suggests persistent habitats as a suitable indicator of hydropeaking impact on organisms with low mobility. The persistent habitat approach takes into account that organisms with a low mobility and a distinct range of tolerance related to hydraulic stress tend to settle in areas with permanently stable conditions. Multivariate aspects are accounted through the fuzzy rule‐based approach and do clearly affect habitat predictions. Habitat requirements of species particularly sensitive to hydropeaking are proposed for the investigation and application in the future. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Hydropower regulations can have dramatic impacts on river ecological communities. The operation of hydropower stations is related to power demands, but their releases in the receiving water body causes sudden changes in flow, which in turn affect the biota. The effects of such flow variations on benthic invertebrates is not fully understood. Here, we studied the effects of duration and intensity of hydropeaking on benthic invertebrates in two rivers over a 3.5‐year period. We used both quantitative (Surber) and semiquantitative (kick samples) sampling methods to compare the ramping zone with the permanently water covered zone downstream of the hydropower plant, and with corresponding unaffected upstream areas. The ramping zone had a different invertebrate community composition and lower benthic density than other areas, especially after hydropeaking. Mayflies and chironomids were most negatively affected by hydropeaking and oligochaetes largely unaffected. Chironomids and the mayfly Baetis rhodani were able to recolonize the ramping zone and almost reach densities similar to deeper areas within 48 days following hydropeaking. The relative abundance of filter feeders tended to increase and gatherers/collectors tended to decrease from the ramping zone towards the deep, permanently water covered areas. In corresponding areas upstream of the power plant, the relative abundance of different functional feeding groups was the same in the mid‐channel and shore sites. Our study shows that hydropeaking has clear impacts on the functional structure of benthic invertebrates below the power plants. The ecological impact of hydropeaking on invertebrate communities should thus be taken into account, for example, by reducing the amplitude and duration of flow fluctuations.  相似文献   

7.
Changes in a brown trout (Salmo trutta L.) population result from interaction among various mechanisms which are dependent on environmental conditions and biotic processes. In reaches influenced by the presence of dams, the instream flow in the bypassed section is not the only parameter which affects the population. Flood episodes, the general connectivity of the bypassed section, and the characteristics of the substrate which define the availability and quality of spawning grounds may also have a crucial impact. The design and fine‐tuning of tools which take environmental parameters into account can improve our understanding of the dynamics of such influenced populations. In this perspective, a deterministic model (MODYPOP) has been developed in an attempt to integrate all these factors and to test the effect of different long‐term scenarios of influenced flow regimes on the structure of trout populations. MODYPOP was applied to three populations and three reaches (on the Roizonne, Neste d'Aure and Lignon du Forez rivers in France). For each stream, experiments were carried out on a bypassed section downstream of a hydropower station, before and after an increase in the minimum instream flow due to relicensing. These experiments allowed integrating into MODYPOP local phenomena (impact of flood episodes, impact of flushing, impact of downstream migration of juveniles and adults) affecting the populations during the study period and then calibrating them. To estimate the change in the population due to the increase in minimum instream flow, different long‐term simulations were run, selecting discharge patterns at random. These scenarios help to evaluate the time required for the population to return to a range close to habitat saturation after an improvement in the hydraulic habitat or following a flood event. These applications have enabled determining the relative importance of changes in population density due to different types of events. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
A negative effect of hydropower on river environment includes rapid changes in flow and habitat conditions. Any sudden flow change could force fish to move towards a refuge area in a short period of time, causing serious disturbances in the life cycle of the fish. A probability-based model was developed to quantify the impact of hydropeaking on habitat suitability for two fish species, brown trout (Salamo trutta) and Grayling (Thymallus thymallus). The model used habitat preference curves, river velocity and depth to develop the suitability maps. The suitability maps reveal that habitat suitability deteriorates as flow increases in the studied part of the river. The probability model showed that, on average, suitability indices are higher for adult grayling than juvenile trout in hydropeaking events in this part of the river. The method developed shows the potential to be used in river management and the evaluation of hydropeaking impacts in river systems affected by hydropower.  相似文献   

9.
Fluctuations in river flows result from diverse natural and/or anthropogenic causes. Hydropeaking, an important anthropogenic flow alteration, results from the rapid increase or decrease of water releases from reservoirs at hydroelectric power stations to meet variable demand for electrical power, thereby altering the flow regime of the river downstream of the hydroelectric power station. Hydropeaking causes short‐term, artificial fluctuations in flow on an hourly, daily, and/or weekly basis. The frequent and regular occurrences of these high and low flow events are fundamentally different from natural flood and drought events and may affect fish fauna. We compared the fish species composition and fish age and size distributions in the Saskatchewan River (Saskatchewan, Canada) downstream of a hydropeaking facility with results from an unaffected Reference Site situated upstream of the reservoir. Lower fish diversity was observed in the 2 downstream sites (Sites 1 and 2, number of species = 11 and 9, respectively) closest to Generating Station in comparison to Site 3 (n = 15) situated further downstream and the upstream reference site (n = 13). There was no difference in the age–length relationship of any of the fish species above and below the Generating Station suggesting that fish grew at the same rates. However, lower numbers of small‐bodied and juvenile fish were caught downstream of the Generating Station suggesting the possibility of increased mortality, decreased habitat suitability, or altered behaviour of small fish downstream of the dam. These data illustrate potential impacts of hydropeaking power stations and has management implications.  相似文献   

10.
Hydroelectric dam operation can alter discharge and temperature patterns, impacting fish populations downstream. Previous investigations into the effects of river regulation on fish have focused on a single species within a river, yet different results among studies suggest the potential for species‐specific impacts. Here, we compare the impacts of two different hydropeaking regimes relative to a naturally flowing river on three ecologically important members of the forage fish community: longnose dace (Rhinichthys cataractae), slimy sculpin (Cottus cognatus) and trout‐perch (Percopsis omiscomaycus). Annual growth, estimated from otolith back‐calculations, was higher for each of the species in the regulated river relative to the naturally flowing river but did not differ between hydropeaking regimes. Condition was assessed using weight–length relationships and differed between rivers for each species, and between hydropeaking regimes for longnose dace and slimy sculpin. Survival of longnose dace and slimy sculpin was lower in the regulated river relative to the naturally flowing river, but comparable between rivers for trout‐perch. Annual growth was significantly related to mean summer discharge in the regulated river and to mean summer water temperature in the naturally flowing river for each species, and significantly different slopes among species indicate species‐specific responses to discharge and temperature alterations. This study demonstrates different biological responses among fish species within rivers to regulation in general, as well as to specific hydropeaking regimes. Future studies should focus on multiple species and multiple indicators of fish health to more fully characterize the impacts of river regulation on downstream fish communities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Groundwater‐dominated streams have particular flow regimes that commonly support populations of trout. Meso‐ and micro‐habitat surveys were carried out on a reach of the river Tern that drains a Triassic sandstone aquifer in the English West Midlands, to investigate brown trout (Salmo trutta) habitat use with varying flows. Mesohabitats were mapped over a range of summer and autumn flows and coupled with direct underwater observation (snorkelling) of fish locations together with point measurements of velocity and depth. The number of habitat types recorded was low and dominated by glides, runs, and backwaters. Brown trout showed a strong association with glides and runs with adults being more associated with runs and parr with glides. General habitat use curves showed brown trout to favour depths between 0.30 and 0.40 m and velocities below 0.40 m s?1. A clear preference was shown for sand and gravel bed materials. However, the differentiation of hydraulic habitats was weak and there was no trend in mesohabitats or change in trout use of mesohabitats with discharge. The study raises limitations of the mesohabitat survey approach when linking fish ecology, flow and physical habitat in small streams with low flow variability and low habitat diversity. In these situations, other factors (especially cover features) appear to strongly influence brown trout distribution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Native fish faunas throughout the American Southwest have declined dramatically in the past century, mainly a consequence of habitat alteration and alien species introductions. We initiated this 6‐year study to evaluate the efficacy of mechanical removal of nonnative predaceous rainbow trout Oncorhynchus mykiss, brown trout Salmo trutta, yellow bullhead Ameiurus natalis and smallmouth bass Micropterus dolomieu from an open 4.6‐km reach of West Fork Gila River in southwest New Mexico, USA. Removal efforts involved intensive sampling with a 10‐ to 12‐person crew using backpack electrofishers and seines to capture fish over a 4‐ to 5‐day period each year. Additionally, two reference sites were sampled with similar methods to compare temporal changes in species mass in the absence of a removal effort. Results were mixed. Mass of yellow bullhead, rainbow trout and brown trout declined in the removal reach from 2007 through 2012, but there was no change in smallmouth bass. Concurrently, mass of Rainbow trout, yellow bullhead and smallmouth bass did not change at reference sites, but brown trout mass declined, indicating factors other than removal were driving abundance of brown trout. Occurrence of several large flathead catfish Pylodictis olivaris in the removal reach in 2012 changed what would have been a decline in overall nonnative mass to no change over the course of the study. Spikedace Meda fulgida was the only native species positively responding to predator removal. Results of this study suggest that with moderate effort and resources applied systematically, mechanical removal can benefit some native fish species, but movement of problem species from surrounding areas into removal reaches necessitates continued control efforts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
We developed an individual-based model (IBM) to understand the effects of hydropeaking on growth, survival and distribution of age 0+ to 1+ juveniles for high-conservation value populations of native brown trout (Salmo trutta) and Atlantic salmon (S. salar) in river Gullspång, Sweden. We parameterized and applied inSTREAM (7.2-SD) and calibrated the model by comparing predicted versus observed growth under the current hydropeaking regime (n=>1,200 model fish for 365 days). Our objective was to model growth, survival and distribution under flow scenarios with and without hydropeaking. We observed that hydropeaking generally resulted in modest (~10%) negative effects on growth and survival of both species. Survival was more affected than was growth, smaller fish more affected than larger fish. On-peak (high) hydropeaking flows resulted in less profitable feeding conditions (less growth) and higher predation (lower survival). Thus, inSTREAM 7.2-SD appears to capture ecologically-relevant behavioral patterns under hydropeaking, for example, habitat selection, in response to rapid flow changes. Understanding such patterns for large rivers via manipulative field studies, even if possible, would be time-consuming and costly. Our study demonstrates the potential of IBMs as powerful tools for testing research questions and assessing and prioritizing alternative management strategies in regulated rivers.  相似文献   

14.
Positive correlation between trout abundance and dissolved metal concentrations along the Upper Clark Fork River (UCFR; Montana, USA) have forced restoration practitioners to seek underlying causes of reduced fish density beyond heavy metal contamination. Throughout the river, nutrient enrichment and summer algal blooms may be hindering full recovery of trout populations. In this study, we evaluated the community structure and metal body burdens of benthic invertebrates and characterized existing trophic linkages between brown trout and dominant invertebrate taxa before and during summer algal blooms in a downstream reach of the UCFR where fish densities are low (20–30 trout/km), and where metal contamination is relevant but minimal compared with upstream. In spring, estimated invertebrate abundance was 1,727 ± 217 individuals/m2 and dominated by Ephemerellidae and Baetidae families. During summer algal bloom, invertebrate abundance increased 15‐fold (20,580 ± 3,510 individuals/m2) mostly due to greater abundance of Chironomidae, Hydropsychidae, and Simulidae. Copper body burdens (130 ± 42 ppm) were higher than any other heavy metal regardless of season, but detectable concentrations of arsenic, cadmium, and lead were also found. A Bayesian mixing model combining metal burdens and stable isotopes showed that in the spring, trout of average size (355 ± 65 g) relied mostly on epibenthic taxa (Ephemerellidae and Hydropsychidae), contrasting with small (<100 g) and large (>400 g) trout relying heavily on Baetidae, a major component of invertebrate drift. Foraging segregation related to trout size did not occur during summer algal blooms, which may reflect increasing influence of benthic algal proliferation or indicate the indiscriminate use of pool habitats as thermal refugia over summer conditions by trout of different ages.  相似文献   

15.
Dams create barriers to fish migration and dispersal in drainage basins, and the removal of dams is often viewed as a means of increasing habitat availability and restoring migratory routes of several fish species. However, these barriers can also isolate and protect native taxa from aggressive downstream invaders. We examined fish community composition two years prior to and two years after the removal of a pair of low‐head dams from Boulder Creek, Wisconsin, U.S.A. in 2003 to determine if removal of these potential barriers affected the resident population of native brook trout (Salvelinus fontinalis). Despite the presence of other taxa in the downstream reaches, and in other similar streams adjacent to the Boulder Creek (including the brown trout, Salmo trutta), no new species had colonized the Boulder Creek in the two years following dam removal. The adults catch per unit effort (CPUE) was lower and the young‐of‐the‐year catch per unit effort (YOY CPUE) was higher in 2005 than in 2001 in all reaches, but the magnitude of these changes was substantially larger in the two dam‐affected sample reaches relative to an upstream reference reach, indicating a localized effect of the removal. Total length of the adults and the YOY and the adult body condition did not vary between years or among reaches. Thus, despite changes in numbers of adults and the YOYs in some sections of the stream, the lack of new fish species invading Boulder Creek and the limited extent of population change in brook trout indicate that dam removal had a minor effect on these native salmonids in the first two years of the post‐removal. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Reach‐scale physical habitat assessment scores are increasingly used to make decisions about management. We characterized the spatial distribution of hydraulic habitat characteristics at the reach and sub‐reach scales for four fish species using detailed two‐dimensional hydraulic models and spatial analysis techniques (semi‐variogram analyses). We next explored whether these hydraulic characteristics were correlated with commonly used reach‐scale geomorphic assessment (RGA) scores, rapid habitat assessment (RHA) scores, or indices of fish biodiversity and abundance. River2D was used to calculate weighted usable areas (WUAs) at median flows, Q50, for six Vermont streams using modelled velocity, depth estimates, channel bed data and habitat suitability curves for blacknose dace (Rhinichthys atratulus), brown trout (Salmo trutta), common shiner (Notropis cornutus) and white sucker (Catostomus commersoni) at both the adult and spawn stages. All stream reaches exhibited different spatial distributions of WUA ranging from uniform distribution of patches of high WUA to irregular distribution of more isolated patches. Streams with discontinuous, distinct patches of high score WUA had lower fish biotic integrity measured with the State of Vermont's Mixed Water Index of Biotic Integrity (MWIBI) than streams with a more uniform distribution of high WUA. In fact, the distribution of usable habitats may be a determining factor for fish communities. A relationship between predicted WUAs averaged at the reach scale and RGA or RHA scores was not found. Future research is needed to identify the appropriate spatial scales to capture the connections between usable patches of stream channel habitat. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Hungry Horse Dam on the South Fork Flathead River, Montana, USA, has modified the natural flow regimen for power generation, flood risk management and flow augmentation for anadromous fish recovery in the Columbia River. Concern over the detrimental effects of dam operations on native resident fishes prompted research to quantify the impacts of alternative flow management strategies on threatened bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats. Seasonal and life‐stage specific habitat suitability criteria were combined with a two‐dimensional hydrodynamic habitat model to assess discharge effects on usable habitats. Telemetry data used to construct seasonal habitat suitability curves revealed that subadult (fish that emigrated from natal streams to the river system) bull trout move to shallow, low‐velocity shoreline areas at night, which are most sensitive to flow fluctuations. Habitat time series analyses comparing the natural flow regimen (predam, 1929–1952) with five postdam flow management strategies (1953–2008) show that the natural flow conditions optimize the critical bull trout habitats and that the current strategy best resembles the natural flow conditions of all postdam periods. Late summer flow augmentation for anadromous fish recovery, however, produces higher discharges than predam conditions, which reduces the availability of usable habitat during this critical growing season. Our results suggest that past flow management policies that created sporadic streamflow fluctuations were likely detrimental to resident salmonids and that natural flow management strategies will likely improve the chances of protecting key ecosystem processes and help to maintain and restore threatened bull trout and westslope cutthroat trout populations in the upper Columbia River Basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Hydropeaking hydropower plants are the main source of renewable energy, meeting sub-daily peaks in electricity demand. They induce rapid artificial flow variations, highly variable velocities, drift, and stranding risks for aquatic organisms. In hydropeaking reaches, microhabitat selection likely depends on both present and past hydraulics (flow velocity and water depth); this study aims to assess their relative impact. For this purpose, we used observations of fish abundance in 1,180 microhabitats (507 sampled by electrofishing, 673 by snorkeling) and of invertebrate abundance in 36 microhabitats (hyporheic and benthic) in a medium-sized hydropeaking river. We described past hydraulics of microhabitats over the 15 days preceding sampling, using a 2D hydrodynamic model, by identifying microhabitats dewatering (drying during >10 hr) or with high-velocity conditions (>1.3 m s−1 during >10 hr). Invertebrates guilds (defined based on their selection of present hydraulics in rivers without hydropeaking) responded significantly to past hydraulics, with abundances 3.5–15.3 times lower in dewatering habitats. Selection for present hydraulics by invertebrates was different from that observed in rivers without hydropeaking. For more mobile fish, responses were weaker and different, with a “bank” guild selecting dewatering microhabitats and, secondarily, a “midstream” guild avoiding them. Selection of present hydraulics by fish was similar to that observed in rivers without hydropeaking. Overall, past hydraulics influenced microhabitat selection, with stronger effects on invertebrates and stronger effects of dewatering than of high past velocities. However, high past velocities force fish to move and invertebrates to experience a large range of velocity.  相似文献   

19.
20.
The maintenance of hydrologic connectivity in river networks has become an important principle for guiding management and conservation planning for threatened salmon populations, yet our understanding of how fish movement is impaired by spatial and temporal variation in connectivity remains limited. In this study, a two‐dimensional hydraulic modelling approach is presented to evaluate flow connectivity in relation to passage requirements of adult steelhead trout (Oncorhynchus mykiss) in coastal California streams. High‐resolution topographic data of stream reaches with distinct channel morphology were collected using terrestrial light detection and ranging surveys and linked with water surface measurements to calibrate hydraulic model simulations. Quantitative metrics of longitudinal flow connectivity were developed to assess fish passage suitability in relation to stream discharge. Measured flow data from the 2008–2009 winter season and simulated long‐term records indicated that suitable passage flows occur with relatively low frequency and duration at all sites, suggesting that instream flow protections for fish passage are warranted. Results from the hydraulic modelling simulations were then compared with two alternative methods for assessing passage flows. A regional formula used by the State of California to identify minimum instream flow needs provided conservative estimates of passage flow requirements, whereas an approach based on riffle crest water depths underestimated flow needs. The hydraulic modelling approach appears well suited for simulating flows for fish passage studies and may be particularly useful for testing alternative environmental flow assessment methods and evaluating habitat–flow relationships in stream reaches of importance, such as critical habitat for threatened fish species. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号