首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solidification in industrial processes very often involves flow fields, high thermal gradients and high pressures: the development of a model able to describe the polymer behavior becomes complex. Recently a new equipment has been developed and improved to study the crystallization of polymers when quenched under pressure. An experimental apparatus based on a modified, special injection moulding machine has been employed. Polymer samples can be cooled at a known cooling rate up to 100°C/s and under a constant pressure up to 40 MPa. Density, Micro Hardness (MH), Wide angle X‐ray diffraction (WAXD), and annealing measurements were then used to characterize the obtained sample morphology. Results on one iPP sample display a lower density and a lower density dependence on cooling rate for increasing pressure. Micro hardness confirms the same trend. A deconvolution technique of WAXD patterns is used to evaluate the final phase content of samples and to assess a crystallization kinetics behavior. A master curve approach to explain iPP behavior under pressure and high cooling rates was successfully applied on density results. On the basis of this simple model it is possible to predict the final polymer density by superposition of the effect of cooling rate and the effect of pressure in a wide range of experimental conditions.  相似文献   

2.
The poly(l ‐lactide) (PLLA) samples were prepared by the annealing under 100 MPa at 75–145°C and 200 MPa at 105–145°C for 6 h, respectively. The crystalline structures, thermal properties and morphology were investigated using differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), and scanning electron microscopy (SEM). On the basis of the DSC and WAXD results, it can be seen that the α′ form was formed by the annealing under 100 MPa at 85–95°C but not found under 200 MPa at 105–145°C. A phase diagram of PLLA crystal form under high pressure was constructed under the given experimental conditions, which displayed the α′ form was formed at limited temperature and pressure range. Besides, SEM suggested that the PLLA samples annealed under 100 MPa crystallize to form lamellar‐like crystals due to the low growth rate and the confined crystallization behavior under high pressure. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40637.  相似文献   

3.
In this article, we discuss the crystallization behavior and crystallization kinetics of isotactic polypropylene (iPP) modified by long‐chain‐branching (LCB) high‐melt‐strength iPP over a wide composition range, that is, LCB‐iPP from 10 to 50 wt %. Over the entire range we investigated, the presence of LCB‐iPP accelerated crystallization in both the isothermal crystallization process and nonisothermal crystallization process, even when the LCB‐iPP content was as low as 10%, and both crystallization processes were enhanced more significantly as the LCB‐iPP content increased. Hoffman–Lauritzen theory analysis revealed that the fold‐free energy decreased effectively with the occurrence of the LCB structure, although the growth rate of spherulites was depressed, as shown by polarized optical microscopy. Meanwhile, the regime III–regime II transition temperature was about 15° higher for all of the LCB‐iPP compositions than that of iPP because the LCB structure reduced the mobility of the polypropylene chains. Furthermore, the γ‐form crystal structure was favored by LCB compared to the β form, which was supported by wide‐angle X‐ray diffraction. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
The important role of network relaxation in the voiding and fracture toughness of isotactic polypropylene (iPP) has been explored with video‐aid tensile tests, two‐dimensional small‐angle X‐ray scattering (2D‐SAXS) measurements, and morphological observations. The results indicated that macroscopic volume dilatation related to voiding became lower during large deformation of iPP sample with rich γ phase (denoted as γ‐iPP) cooled at 1°C/min, compared with one with exclusive α form (referred to α‐iPP) quenched in air. Furthermore, void propagation perpendicular to the tensile direction, demonstrated by Guinier approximation analysis of 2D‐SAXS results, was suppressed to a large extent in such a γ‐iPP sample. Less network relaxation, resulted from its peculiar crystalline and amorphous phases, was responsible for lower volume dilatation and slower void propagation in the γ‐iPP sample. Meanwhile, less network relaxation and suppressed transverse void propagation contributed to higher toughness in the γ‐iPP sample. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
The crystallization kinetics and morphology development of pure isotactic polypropylene (iPP) homopolymer and iPP blended with atactic polypropylene (aPP) at different aPP contents and the isothermal crystallization temperatures were studied with differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized optical microscopy. The spherulitic morphologies of pure iPP and larger amounts of aPP for iPP blends showed the negative spherulite, whereas that of smaller amounts of aPP for the iPP blends showed a combination of positive and negative spherulites. This indicated that the morphology transition of the spherulite may have been due to changes the crystal forms of iPP in the iPP blends during crystallization. Therefore, with smaller amounts of aPP, the spherulitic density and overall crystallinity of the iPP blends increased with increasing aPP and presented a lower degree of perfection of the γ form coexisting with the α form of iPP during crystallization. However, with larger amounts of aPP, the spherulitic density and overall crystallinity of the iPP blends decreased and reduced the γ‐form crystals with increasing aPP. These results indicate that the aPP molecules hindered the nucleation rate and promoted the molecular motion and growth rate of iPP with smaller amounts of aPP and hindered both the nucleation rate and growth rate of iPP with larger amounts of aPP during isothermal crystallization. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1093–1104, 2007  相似文献   

6.
Ultrafine fibers or fiber web is an attractive material for its high aspect ratio or porous structure which is welcomed in various applications. In this study, ultrafine fibers (5–10 μm) of styrene–acrylonitrile (SAN) copolymer/isotactic polypropylene (iPP) blends were produced by melt electrospinning, SAN acted as a polymeric nucleating agent (PNA) in iPP fibers. Wide‐angle X‐ray diffraction, differential scanning calorimetry, scanning electron microscopy, and polarized optical microscopy were used to investigate the morphologies and the crystal structures of SAN/iPP electrospun fibers. The results showed that SAN/iPP melt formed microfibers with different morphologies and crystallinities through electrostatic stretching. The morphological distribution of SAN in iPP fibers depended on the SAN content, and the distribution influenced its nucleating activity and the final crystal structure of SAN/iPP electrospun fibers. After annealing treatment, the molecular chains of iPP in the confined SAN/iPP microfibers disorientated and rearranged, leading to the formation of a mixture of α‐ and γ‐crystal forms. The relative amount of the γ‐crystal form depended on PNA's concentration, annealing temperature and annealing time. Melt electrospun iPP fibers prepared in this study were collected as fiber webs that can be used for protective clothing material, filtration media, reinforcement for composites, and so on. POLYM. ENG. SCI., 53:2674–2682, 2013. © 2013 Society of Plastics Engineers  相似文献   

7.
The structure and thermal properties of polyamide‐1010 (PA1010), treated at 250°C for 30 min under pressures of 0.7–2.5 GPa, were studied with wide‐angle X‐ray diffraction (WAXD), infrared (IR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Crystals were formed when the pressures were less than 1.0 GPa or greater than 1.2 GPa. With increasing pressure, the intensity of the diffraction peak at approximately 24° was enhanced, whereas the peak at approximately 20° was depressed. The triclinic crystal structure of PA1010 was preserved. The highest melting temperature of the crystals obtained in this work was 208°C for PA1010 treated at 1.5 GPa. Crosslinking occurred under pressures of 1.0–1.2 GPa. Only a broad diffraction peak centered at approximately 20° was observed on WAXD patterns, and no melting and crystallization peaks were found on DSC curves. IR spectra of crosslinked PA1010 showed a remarkable absorption band at 1370 cm?1. The N? H stretching vibration band at 3305 cm?1 was weakened. Crystallized PA1010 had a higher thermal stability than crosslinked PA1010, as indicated on TGA curves by a higher onset temperature of decomposition. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2522–2527, 2002  相似文献   

8.
The crystallization kinetics of polyamide‐6 (PA‐6) and its nanocomposite (PNC) with 2% clay were studied, using a pressure dilatometer (50 MPa to 200 MPa) to follow the volume changes associated with the crystallization process. Isobaric experiments were carried out to evaluate the effect of pressure and clay on melting temperature (Tm) and crystallization temperature (Ta) of PA‐6. The melting temperatures of PA‐6 in the PNC were very close to those of PA‐6 alone at comparable pressures, but the crystallization temperatures in the PNC were lower than those of PA‐6 alone. The materials exhibited two crystallization zones in isothermal/isobaric experiments. The initial zone involved both the γ‐form and the α‐form of PA‐6, while in the latter zone the γ‐form was dominant. The Avrami equation was used to fit the isothermal/isobaric crystallization data. The Avrami exponent n was between 1.0 and 3.2 for the γ‐form of unfilled PA‐6, between 0.9 and 2.6 for the γ‐form in PNC and for the γ‐form of PA‐6 alone, n was between 1.0 and 2.1 and in PNC between 1.2 and 2.6. The Avrami rate constants (K) for PA‐6 and PNC depend on the experimental crystallization temperature as well as pressure. The rate of crystallization under similar conditions was higher for PNC. Infrared studies on compression molded PA‐6 and PNC samples, cooled from melt at different rates, confirm the formation of the γ‐form in the initial stages of crystallization, as well as its transformation into the α‐form at later stages. In the case of PNC, the γ‐form stabilized when the sample was quenched from melt.  相似文献   

9.
Polyamide 6 (PA6) isotropic films and oriented cables were prepared by compression molding or by consecutive extrusion and cold‐drawing. These samples were isothermally annealed in the 120–200°C range and were then subjected to tensile tests at room temperature. Synchrotron wide‐angle X‐ray scattering (WAXS) and small‐angle X‐ray scattering (SAXS) patterns were obtained before and after mechanical failure. These data were related with the mechanical properties of the respective PA6 samples. The annealing of isotropic PA6 resulted in an increase in the Young's modulus (E) and yield stress (σy) values, which was attributed to the observed proportional reduction of the d‐spacings of the intersheet distances in both the α‐PA6 and γ‐PA6 polymorphs. Analysis of the WAXS and SAXS patterns of isotropic PA6 after break allowed the supposition of structural changes in the amorphous phase, with these being better pronounced with increasing annealing temperature; this made the samples less ductile. In oriented PA6 samples, annealing resulted in a drastic increase in the E and σy values accompanied by a phase transition from γ‐PA6 to α‐PA6 and a well‐pronounced reduction in the intersheet distances of both polymorphs. The stretching of the oriented samples led to an additional γ‐to‐α transition, whose extent was also related to structural changes in the amorphous phase. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2242–2252, 2007  相似文献   

10.
BACKGROUND: It is a challenge for polymer processing to promote the formation of γ‐phase under atmospheric conditions in isotactic polypropylene (iPP) copolymer containing chain errors. Incorporation of an α‐nucleator in iPP copolymer seems reasonable since it can enhance non‐isothermal crystallization. Up to now, however, the issue regarding a β‐nucleated iPP copolymer still remains unclear, which is the subject of this study. RESULTS: The results indicate that the γ‐phase indeed occurs in a β‐nucleated random iPP copolymer with ethylene co‐unit (PPR) sample and becomes predominant at slow cooling rates (e.g. 1 °C min?1) where the formation of the β‐form is suppressed to a large extent. With detailed morphological observations the formation of γ‐phase in the β‐nucleated PPR sample at slow cooling rate is unambiguously attributed to the nucleating duality of the β‐nucleator towards α‐ and β‐polymorphs. The α‐crystals, induced by the β‐nucleator, serve as seeds for the predominant growth of the γ‐phase. Moreover, the presence of the β‐nucleator, acting as heterogeneous nuclei, promotes the formation of γ‐phase in the nucleated PPR sample, at least to some extent. CONCLUSION: The findings in this study extend our insights into the formation of γ‐phase in β‐nucleated iPP copolymer and, most importantly, provide an alternative route to obtain iPP rich in γ‐phase. Copyright © 2008 Society of Chemical Industry  相似文献   

11.
The structure, morphology, and isothermal crystallization behaviors of polypropylene (PP) prepared with heterogeneous Ziegler‐Natta catalyst at high temperature (100°C) were investigated with differential scanning calorimetry, wide‐angle X‐ray diffraction, temperature‐rising elution fractionation, gel permeation chromatography, and 13C NMR. The results reveal that the crystalline structure changes with variation of the composition of the PP. The isotactic PP (iPP)1 prepared with Et3Al and “TMA‐depleted” methylaluminoxane crystallizes from the melt in the mixtures of the α and β forms, whereas each fraction obtained from pure PP1 does not show β‐PP crystal at the same crystallization condition. In addition, the γ‐PP crystal is appeared for the fractions of low mmmm%‐[mmmm] (mmmm pentad content) values and molecular weight. Moreover, it was found that the iPP2 or iPP3 prepared with Hex3Al crystallizes from the melt in mixtures of the α and γ forms, even at atmospheric pressure and for high molecular weight. The microstructure showed in the PP samples obtained at high temperature could be well explained with the shift in the alkylaluminium‐donor equilibrium reactions at high polymerization temperature. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
A new route based on reversibly crosslinking reactive extrusion is applied for the development of iPP/clay nanocomposites. Analysis of small‐angle X‐ray scattering (SAXS) reflections of isotactic polypropylene (iPP)/clay nanocomposites, prepared by two different mixing and chemical crosslinking methods (i.e., conventional and in situ), is presented and results are compared with preceding wide‐angle X‐ray diffraction (WAXD) results. It is shown that the presence of clay significantly affects the value of long spacing in iPP, as well as the coherence length of lamellar stacks. Results show that the size of the coherently diffracting nanodomains decreases in two stages, first rapidly and then slowly as a function of increasing clay content. This can be attributed to the influence of confined iPP lamellae under the effect of rising number of clay particles. The appearance of the γ‐crystalline form in the crosslinked iPP/clay nanocomposites is related with the difficulty in chain folding of iPP chains introduced by the chemical crosslinking process, as well as by the presence of clay particles. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
The supermolecular structure of binary isotactic polypropylene/atactic polystyrene (iPP/PS) injection‐molded blends were studied by wide‐angle X‐ray diffraction, differential scanning calorimetry, and optical microscopy. The combination of different methods gives a possibility of analysis of relation between the phase transformation in polypropylene and crystallization parameters. Effect of compatibilization of poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) grafted with maleic anhydride (SEBS‐g‐MA) block copolymers in the iPP/PS blends on the structure, nucleation, crystal growth, solidification, and the phase morphology was analyzed. We found that the β‐crystallization tendency of polypropylene matrix can be enhanced by adding atactic polystyrene. However, the incorporation of SEBS‐g‐MA into iPP/PS blends resulted in an important decrease in β‐content of iPP. It is evident that the presence of compatibilizing agent caused a very significant reduction of the α‐spherulite growth rates and the crystal conversion as well as increases of half‐time crystallization in comparison with the iPP/PS systems. The relation between kinetic parameters of crystallization process and polymorphic structure of iPP in blend systems has been satisfactorily explained. Moreover, a strong effect of processing parameters on the β‐phase formation was observed. The results clearly show that at a higher temperature of mold and lower injection speed, the amount of β‐phase of iPP matrix slightly decreases. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

14.
The nucleating ability of p‐cyclohexylamide carboxybenzene (β‐NA) towards isotactic polypropylene (iPP) was investigated by differential scanning calorimetry, X‐ray diffraction, polarized optical microscopy and scanning electron microscopy. β‐NA is identified to have dual nucleating ability for α‐iPP and β‐iPP under appropriate kinetic conditions. The formation of β‐iPP is dependent on the content of β‐NA. The content of β‐phase can reach as high as 96.96% with the addition of only 0.05 wt% β‐NA. Under non‐isothermal crystallization the content of β‐iPP increases with increasing cooling rate. The maximum β‐crystal content is obtained at a cooling rate of 40 °C min–1. The supermolecular structure of the β‐iPP is identified as a leaf‐like transcrystalline structure with an ordered lamellae arrangement perpendicular to the special surface of β‐NA. Under isothermal crystallization β‐crystals can be formed in the temperature range 80–140 °C. The content of β‐crystals reaches its maximum value at a crystallization temperature of 130 °C. © 2012 Society of Chemical Industry  相似文献   

15.
Water‐induced crystallization of polycarbonate (PC) was investigated in water‐saturated supercritical CO2 (scCO2) in the range of 80–160°C and 12–20 MPa, with the help of differential scanning calorimetry and wide‐angle X‐ray diffraction. Compared with pure scCO2, the enhanced plasticizing effect of water‐saturated scCO2 reduced the energy‐barrier for the motion of polymer chains, hence increased the crystallization rate of PC, and reduced the pressure threshold for crystallization from 14 to 12 MPa. On the other hand, the presence of water did not affect the thermodynamics of PC crystallization in scCO2. A 3D‐diagram was established to show the relationship between crystallization and solubility parameter of mixed supercritical fluid at different temperatures and pressures. The results show clearly that the PC has a wider range of crystallization temperature and pressure in water‐saturated scCO2 than in pure scCO2, mostly because the addition of water increased significantly the solubility parameter of mixed supercritical fluid, and decreased the difference in solubility parameter between PC and water‐saturated scCO2. POLYM. ENG. SCI., 47:1338–1343, 2007. © 2007 Society of Plastics Engineers  相似文献   

16.
In this study, the melt structure of isotactic polypropylene (iPP) nucleated with α/β compounded nucleating agents (α/β‐CNA, composed of the α‐NA of 0.15 wt % Millad 3988 and the β‐NA of 0.05 wt % WBG‐II) was tuned by changing the fusion temperature Tf. In this way, the role of melt structure on the crystallization behavior and polymorphic composition of iPP were investigated by differential scanning calorimetry (DSC), wide‐angle X‐ray scattering (WAXD) and scanning electron microscopy (SEM). The results showed that when Tf = 200°C (iPP was fully molten), the α/β‐CNA cannot encourage β‐phase crystallization since the nucleation efficiency (NE) of the α‐NA 3988 was obviously higher than that of the β‐NA WBG‐II. Surprisingly, when Tf was in 179–167°C, an amount of ordered structures survived in the melt, resulting in significant increase of the proportion of β‐phase (achieving 74.9% at maximum), indicating that the ordered structures of iPP played determining role in β‐phase crystallization of iPP nucleated with the α/β‐CNA. Further investigation on iPP respectively nucleated with individual 3988 and WBG‐II showed that as Tf decreased from 200°C to 167°C, the crystallization peak temperature Tc of iPP/3988 stayed almost constant, while Tc of iPP/WBG‐II increased gradually when Tf < 189°C and became higher than that of iPP/3988 when Tf decreased to 179°C and lower, which can be used to explain the influence of ordered structure and α/β‐CNA on iPP crystallization. Using this method, the selection of α‐NA for α/β‐CNA can be greatly expanded even if the inherent NE of β‐NA is lower than that of the α‐NA. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41355.  相似文献   

17.
Optical microscopy, differential scanning calorimetry, and small angle X‐ray scattering techniques were used to study the influence of crystallization conditions on the morphology and thermal behavior of samples of ternary blends constituted of isotactic polypropylene (iPP), atactic polymethylmethacrylate (aPMMA), and a novel graft copolymer of unsaturated propylene with methylmethacrylate (uPP‐g‐PMMA). The purpose was to assess the uPP‐g‐PMMA capability to act as compatibilizer for iPP/aPMMA materials. It was shown that the presence of uPP‐g‐PMMA copolymer affects the interfacial tension between the iPP and aPMMA phase in the melt state, the aPMMA particle size, and particle‐size distribution is modified. After complete crystallization of the iPP phase at relatively low undercooling, in a range of crystallization temperatures, the presence of the uPP‐g‐PMMA phase was found to modify both mode and state of dispersion of minor component and spherulitic texture and inner structure of spherulites fibrillae. The extent of the induced modifications was dependent on a combination of composition and undercooling. Also, relevant thermodynamic parameters of the iPP phase, such as the equilibrium melting temperature and the surface free energy of folding, were strongly affected by the presence of the uPP‐g‐PMMA phase, opposite effects being observed depending on the uPP‐g‐PMMA content. The observed melting temperature and surface free energy of folding values were accounted for by the growth of iPP lamellar crystals with different perfection, thickness, and surface disorder. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 143–158, 2001  相似文献   

18.
Optical microscopy, differential scanning calorimetry, and small angle X‐ray scattering techniques were used to study the influence of the crystallization conditions on morphology and thermal behavior of samples of binary blends constituted of isotactic polypropylene (iPP) and a novel graft copolymer of unsaturated propylene with styrene (uPP‐g‐PS) isothermally crystallized from melt, at relatively low undercooling, in a range of crystallization temperatures of the iPP phase. It was shown that, irrespective of composition, no fall in the crystallinity index of the iPP phase was observed. Notwithstanding, spherulitic texture and thermal behavior of the iPP phase in the iPP/uPP‐g‐PS materials were strongly modified by the presence of copolymer. Surprisingly, iPP spherulites crystallized from the blends showed size and regularity higher than that exhibited by plain iPP spherulites. Moreover, the amount of amorphous material located in the interspherulitic amorphous regions decreased with increasing crystallization temperature, and for a given crystallization temperature, with increasing uPP‐g‐PS content. Also, relevant thermodynamic parameters, related to the crystallization process of the iPP phase from iPP/uPP‐g‐PS melts, were found, composition dependent. The equilibrium melting temperature and the surface free energy of folding of the iPP lamellar crystals grown in the presence of uPP‐g‐PS content up to 5% (wt/wt) were, in fact, respectively slightly lower and higher than that found for the lamellar crystals of plain iPP. By further increase of the copolymer content, both the equilibrium melting temperature and surface free energy of folding values were, on the contrary, depressed dramatically. The obtained results were accounted for by assuming that the iPP crystallization process from iPP/uPP‐g‐PS melts could occur through molecular fractionation inducing a combination of morphological and thermodynamic effects. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2286–2298, 2001  相似文献   

19.
Micro‐ and meso‐scale structure changes of α‐form isotactic polypropylene (α‐iPP) during uniaxial stretching is studied by time‐resolved synchrotron small‐angle X‐ray scattering (SAXS) and wide‐angle X‐ray scattering (WAXS). The structure/property relations are investigated at different temperatures, and the effects of isothermal crystallization are also studied with POM. The X‐ray scattering results show that the long period increased and the lamellar oriented along the stretching direction in the elastic deformation stage. The lamellar and crystals start destructing after yielding. And from it POM images it can be seen that with higher crystallization temperature the spherulites connected to form a crystalline network, on which the stress is mainly loaded. It turns out different environment temperatures affect mostly the amorphous domains. And samples exhibit different yielding mechanisms with different thermal histories. A hypothetical structural mechanism is proposed based to explain the observed relationship between the processing parameters, thermal history and the structure/property relations of α‐iPP. POLYM. ENG. SCI., 58:160–169, 2018. © 2017 Society of Plastics Engineers  相似文献   

20.
In‐situ high‐pressure room temperature synchrotron X‐ray diffraction and optical Raman and infrared spectroscopy were used to examine the structural properties, equation of state, and vibrational dynamics of diaminotetrazolium nitrate (HDAT‐NO3). The X‐ray measurements show that the pressure–volume relations remain smooth to 12 GPa. X‐ray diffraction measurements at pressures above 12 GPa were not possible in this study because of sample decomposition resulting from several factors. X‐ray diffraction reveals no indication of a phase transition to at least 12 GPa, but slight variations in the c/b unit cell ratio suggests modifications within the hydrogen bonding sub‐lattice. Vibrational measurements show the ambient phase of HDAT‐NO3 to remain the dominant phase to 33 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号