首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A polymeric alloy (SP–A) containing syndiotactic polystyrene (sPS), atactic polypropylene (aPP), and about 66 wt % sPS‐b‐aPP diblock copolymer, was prepared by the sequential feed of monomers in the presence of the half‐titanocene Cp*Ti(OBz)3 (where Cp* is C5Me5 and Bz is PhCH2), modified methylaluminoxane, and external triisobutylaluminum. The effects of the SP–A alloy as a compatibilizer for sPS and isotactic polypropylene (iPP) blends were evaluated. The blending of sPS and iPP, with and without SP–A, was performed in a single‐screw miniextruder with a side channel that allowed the continuous recycling of materials. The influence of SP–A on the mechanical and thermal properties of the immiscible sPS/iPP blends was investigated over a range of composition. The presence of the SP–A alloy resulted in a significant improvement of the impact strength of the blends compared with that of pure sPS and their pure blends. This improvement was particularly obvious in the sPS/iPP (90/10 wt %) blend containing 5 wt % SP–A. Morphological analysis of the impact‐fractured surface of the ternary blends indicated that the sPS‐b‐aPP diblock copolymer contained in the SP–A alloy acted as an efficient compatibilizer by decreasing the dispersed‐phase iPP particle size, improving the interfacial adhesion, and generating a stable microphase‐separated state. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1596–1605, 2003  相似文献   

2.
Microstructural characteristics of isotactic‐polypropylene/glass bead (iPP/GB) and iPP/wollastonite (iPP/W) composites modified with thermoplastic elastomers, poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) copolymer (SEBS) and corresponding block copolymer grafted with maleic anhydride (SEBS‐g‐MA), were investigated. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and dynamic mechanical analyses (DMA) showed that the iPP/SEBS and iPP/SEBS‐g‐MA blends were partially compatible two‐phase systems. Well‐dispersed spherical GB and acicular W particles without evidence of interfacial adhesion were observed in the iPP/GB and iPP/W binary composites respectively. Contrary to the blends, melt flow rates of the iPP/GB and PP/W composites decreased more with SEBS‐g‐MA than with SEBS because of enhanced interfacial adhesion with SEBS‐g‐MA elastomer. The SEM analyses showed that the ternary composites containing SEBS exhibited separate dispersion of the rigid filler and elastomer particles (i.e., separate microstructure). However, SEBS‐g‐MA elastomer not only encapsulated the spherical GB and acicular W particles completely with strong interfacial adhesion (i.e., core‐shell microstructure) but also dispersed separately throughout iPP matrix. In accordance with the SEM observations, the DSC and DMA revealed quantitatively that the rigid filler and SEBS particles in iPP matrix acted individually, whereas the rigid filler particles in the ternary composites containing SEBS‐g‐MA acted like elastomer particles because of the thick elastomer interlayer around the filler particles. The Fourier transform infrared analyses revealed an esterification reaction inducing the strong interfacial adhesion between the SEBS‐g‐MA phase and the filler particles. POLYM. COMPOS., 31:1265–1284, 2010. © 2009 Society of Plastics Engineers  相似文献   

3.
The interfacial changes associated with a series of polypropylene based composite materials with modified interphases from the reinforcement side, from the matrix side and both were studied by following their dynamic mechanical behavior. Composites consisted in an isotactic polypropylene (iPP) matrix, a series of talc with different surface functionalities (hydroxyl, chloride, n‐butyl amine, and silanes) and a commercial interfacial agent form the matrix side (iPP‐SA with 5% of grafts). A comprehensive interpretation of the link existing between the dynamic mechanical responses of the series of 75/25 iPP/talc composites and the molecular relaxation spectrum occurring in the polymer phase of the composites is made with emphasis on the role played by the interfacial modifications performed from each and both sides of the interphase. Dynamic mechanical analysis has been used here to study how the intended interfacial modifications affected the behavior of the composites. The efficiency of the interfacial phenomena is discussed from a phenomenological point of view as well as by considering classical criteria such as the glass transition temperature and the glass to rubbery transition. Finally, a correlation between mechanical parameters from the microscopic scale and others from the macroscopic scale appears to emerge. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42678.  相似文献   

4.
The thermal properties and morphology development of isotactic polypropylene (iPP) homopolymer and blended with low molecules weigh atactic polypropylene (aPP) at different isothermal crystallization temperature were studied with differential scanning calorimeter and wide-angle X-ray scattering. The results of DSC show that aPP is local miscible with iPP in the amorphous region and presented a phase transition temperature at Tc=120 °C. However, below this transition temperature, imperfect α-form crystal were obtained and leading to two endotherms. While, above this transition temperature, more perfect α- and γ-form crystals were formed which only a single endotherm was observed. In addition, the results of WAXD indicate that the contents of the γ-form of iPP remarkably depend both on the aPP content and isothermal crystallization temperature. Pure iPP crystallized was characterized by the appearance of α- and γ-forms coexisting. Moreover, the highest intensity of second peak, i.e. the (0 0 8) of γ-form coexisting with (0 4 0) of α-form, and crystallinity were obtained for blended with 20% of aPP, the γ-form content almost disappeared for iPP/aPP blended with 50% aPP content. Therefore, detailed analysis of the WAXD patterns indicates that at small amount aPP lead to increasing the crystallinity of iPP blend, at larger amount aPP, while decreases crystallinity of iPP blends with increasing aPP content. On the other hand, the normalized crystallinity of iPP molecules increases with increasing aPP content. These results describe that the diluent aPP molecular promotes growth rate of iPP because the diluent aPP molecular increases the mobility of iPP and reduces the entanglement between iPP molecules during crystallization.  相似文献   

5.
Isotactic polypropylene/poly(cis-butadiene) rubber (iPP/PcBR) blends were prepared by melt mixing. Phase morphology of the blends was investigated by scanning electronic microscopy (SEM). It was found that the dispersed phase spread in continuous phase in a form of spherical particles. The size of the dispersed phase increased as its content increased. The phase-inversion region was the composition of 50/50 and 40/60 vol% in the blends. In the phase-inversion region, a double continuous phase was formed. The glass transition temperatures (T g ) of iPP, PcBR and blends were analyzed by dynamic mechanical analysis (DMA). The blend compositions exhibited two distinct glass transition temperatures corresponding to the iPP-rich and PcBR-rich phases, respectively. The approach of these two peaks with increasing PcBR content indicated partial miscibility between the iPP and PcBR, which was verified by the equilibrium melting point depression of blends.  相似文献   

6.
The efficiency of a synthesized interfacial modifier agent, acrylic acid grafted polypropylene (AAgPP) in glass fibre reinforced nylon 6/polypropylene (GFRN6/PP) blends has been studied. Scanning electron microscopy clearly shows that the dispersed phase particle size decreases when AAgPP content increases (12‐fold decrease in diameter) resulting in a more stable morphology. The established emulsification curve for this system emphasizes the efficiency of the synthesised AAgPP as a potential interfacial modifier for GFRN6/PP blends. AAgPP at 7.5 wt% is to be considered as the critical concentration for our blend; such a concentration corresponds to maximum interaction between the matrix and the dispersed phase. Strong interactions between the blend components have been observed. The effect of increasing the compatibility agent content on Izod impact, tensile strength, tensile modulus and elongation at yield has also been investigated, and a bell‐shaped trend observed with a maximum at 7.5 wt% AAgPP content. A 25 % increase in impact strength for the unnotched specimen, a twofold increase in tensile strength and a fourfold increase in tensile modulus are obtained. At 7.5 wt% AAgPP, a tough–brittle fracture transition is observed with a 2.5 µm particle size diameter. © 2000 Society of Chemical Industry.  相似文献   

7.
In this article, maleated–grafted ethylene‐co‐vinyl acetate (EVA‐g‐MA) was used as the interfacial modifier for polypropylene/polyamide‐6 (PP/PA6) blends, and effects of its concentration on the mechanical properties and the morphology of blends were investigated. It was found that the addition of EVA‐g‐MA improved the compatibility between PP and PA6 and resulted in a finer dispersion of dispersed PA6 phase. In comparison with uncompatibilized PP/PA6 blend, a significant reduction in the size of dispersed PA6 domain was observed. Toluene‐etched micrographs confirmed the formation of interfacial copolymers. Mechanical measurement revealed that the addition of EVA‐g‐MA markedly improved the impact toughness of PP/PA6 blend. Fractograph micrographs revealed that matrix shear yielding began to occur when EVA‐g‐MA concentration was increased upto 18 wt %. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99:3300–3307, 2006  相似文献   

8.
Present work is devoted to the study of the tensile behavior of polypropylene (PP)/mica composites with improved interfacial interactions from the matrix side caused by the presence of a p‐phenylen‐bis‐maleamic acid grafted atactic polypropylene (aPP‐pPBM) as an interfacial agent. Hence, aPP‐pPBM was previously obtained, in our laboratories, by reactive processing in the melt of a by‐product (atactic PP) from industrial polymerization reactors. Present article is two‐fold, on one hand it has been planned to evidence the so called interfacial effects caused by this novel interfacial agent (aPP‐pPBM) yielding better final properties of the heterogeneous system as a whole as revealed by tensile mechanical properties, and on the other to obtain models to forecast the overall behavior of the system. For such purpose, a Box‐Wilson experimental design considering the amount of mica particles and of interfacial agent as independent variables was used to obtain polynomials to forecast the behavior of the PP/Mica system in the experimental space scanned. The existence of a critical amount of aPP‐pPBM to optimize mechanical properties appears to emerge. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
A highly novel nano‐CaCO3 supported β‐nucleating agent was employed to prepare β‐nucleated isotactic polypropylene (iPP) blend with polyamide (PA) 66, β‐nucleated iPP/PA66 blend, as well as its compatibilized version with maleic anhydride grafted PP (PP‐g‐MA), maleic anhydride grafted polyethylene‐octene (POE‐g‐MA), and polyethylene‐vinyl acetate (EVA‐g‐MA), respectively. Nonisothermal crystallization behavior and melting characteristics of β‐nucleated iPP and its blends were investigated by differential scanning calorimeter and wide angle X‐ray diffraction. Experimental results indicated that the crystallization temperature (T) of PP shifts to high temperature in the non‐nucleated PP/PA66 blends because of the α‐nucleating effect of PA66. T of PP and the β‐crystal content (Kβ) in β‐nucleated iPP/PA66 blends not only depended on the PA66 content, but also on the compatibilizer type. Addition of PP‐g‐MA and POE‐g‐MA into β‐nucleated iPP/PA66 blends increased the β‐crystal content; however, EVA‐g‐MA is not benefit for the formation of β‐crystal in the compatibilized β‐nucleated iPP/PA66 blend. It can be relative to the different interfacial interactions between PP and compatibilizers. The nonisothermal crystallization kinetics of PP in the blends was evaluated by Mo's method. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Polyamide 6 (PA 6) and metallocene isotactic polypropylene (m‐iPP) polymers were extruded (in proportions of 75/25, 50/50, and 25/75) from two melt twin‐screw extruders to prepare three PA 6/m‐iPP conjugated filaments. This study investigated the physical properties of PA 6/m‐iPP conjugated filaments with gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis, potentiometry, rheometry, density‐gradient measurements, wide‐angle X‐ray diffraction, extension stress–strain measurements, and scanning electron microscopy. The flow behavior of PA 6/m‐iPP polyblended polymers exhibited negative‐deviation blends, and a 50/50 PA 6/m‐iPP blend showed the minimum value of the melt viscosity. The experimental results from differential scanning calorimetry indicated that PA 6 and m‐iPP molecules formed an immiscible system. The tenacity of the PA 6/m‐iPP conjugated filaments decreased initially and then increased as the m‐iPP content increased. The crystallinities and densities of the PA 6/m‐iPP conjugated filaments had a linear relationship with the blend ratio. Morphological observations revealed that the blends had a dispersed‐phase structure. A pore/fiber morphology of a larger size (from 0.5 to 3 μm in diameter) was observed after a formic acid (PA 6 was moved)/xylene (m‐iPP was moved) treatment on the cross section of a PA 6/m‐iPP conjugated filament. PA 6 and m‐iPP polymers were proved to be an incompatible system. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1471–1476, 2006  相似文献   

11.
The supermolecular structure of binary isotactic polypropylene/poly(styrene‐b‐butadiene‐h‐styrene) (iPP/SBS) and isotactic polypropylene/atactic polystyrene (iPP/aPS) compression molded blends and that of ternary iPP/aPS/SBS blends were studied by optical microscopy, scanning and transmission electron microscopy, wide‐angle X‐ray diffraction and differential scanning calorimetry. Nucleation, crystal growth, solidification and blend phase morphology are affected by the addition of amorphous components (SBS and aPS). As a compatiblizer in immiscible iPP/aPS blends, SBS formed interfacial layer between dispersed honeycomb‐like aPS/SBS particles and the iPP matrix, thus influencing the crystallization process in iPP. The amount of SBS and aPS, and compatibilizing efficiency of SBS, determine the size of dispersed aPS, SBS, and aPS/SBS particles and, consequently, the final blend phase morphologies: well‐developed spherulitic morphology, cross‐hatched structure with blocks of sandwich lamellae and co‐continuous morphology. The analysis of the relationship between the size of spherulites and dispersed particles gave the criterion relation, which showed that, in the case of a well‐developed spherulitization, the spherulites should be about fourteen times larger than the incorporated dispersed particles; i.e. to be large enough to engulf dispersed inclusions without considerable disturbing of the spherulitic structure.  相似文献   

12.
The crystallization kinetics and morphology development of pure isotactic polypropylene (iPP) homopolymer and iPP blended with atactic polypropylene (aPP) at different aPP contents and the isothermal crystallization temperatures were studied with differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized optical microscopy. The spherulitic morphologies of pure iPP and larger amounts of aPP for iPP blends showed the negative spherulite, whereas that of smaller amounts of aPP for the iPP blends showed a combination of positive and negative spherulites. This indicated that the morphology transition of the spherulite may have been due to changes the crystal forms of iPP in the iPP blends during crystallization. Therefore, with smaller amounts of aPP, the spherulitic density and overall crystallinity of the iPP blends increased with increasing aPP and presented a lower degree of perfection of the γ form coexisting with the α form of iPP during crystallization. However, with larger amounts of aPP, the spherulitic density and overall crystallinity of the iPP blends decreased and reduced the γ‐form crystals with increasing aPP. These results indicate that the aPP molecules hindered the nucleation rate and promoted the molecular motion and growth rate of iPP with smaller amounts of aPP and hindered both the nucleation rate and growth rate of iPP with larger amounts of aPP during isothermal crystallization. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1093–1104, 2007  相似文献   

13.
Melt spun drawn fibers were prepared using a ternary blend of PP/PA6/PANI‐complex (polypropylene/polyamide‐6/polyaniline‐complex). Their electrical and mechanical properties were compared to those of binary blend fibers of PP/PANI‐complex. The results of the morphological studies on 55:25:20 PP/PA6/PANI‐complex ternary fibers were found to be in accordance with the predicted morphology for the observed conductivity vs. fiber draw ratio. The scanning electron microscopy (SEM) micrographs of the ternary blend illustrated at least a three‐phase morphology of a matrix/core‐shell dispersed phase style, with widely varying sizes of droplets. This resulted in a dispersed morphology that, in some parts of the blend, approached a bicontinuous/dispersed phase morphology due to coalescence of the small droplets. The matrix was PP and the core‐shell dispersed phase was PA6 and PANI‐complex, in which a part of the PANI‐complex had encapsulated the PA6 phase and the remaining was solved/dispersed in the PA6 core, as later confirmed by X‐ray mapping. When the ternary blend fibers were compared to the binary fibers, the formers were able to combine better conductivity (of an order of 10?3 S cm?1) with a greater tensile strength only at a draw ratio of 5. This indicated that the draw ratio is more critical for the ternary blend fibers, because both conductivity and tensile strength depended on the formation of fibrils from the core‐shell dispersed phase of the PA6/PANI‐complex. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

14.
E.M. Woo  Kai Yun Cheng  C.C. Su 《Polymer》2007,48(19):5753-5766
Issues in blends of polymers of the same chemical repeat unit but with different tacticities were addressed by investigating on the phase behavior and interaction strength of binary blends of three polypropylenes of different tacticities, i.e., isotactic polypropylene (iPP), syndiotactic polypropylene (sPP), and atactic polypropylene (aPP) using polarized optical microscopy (POM) and differential scanning calorimetry (DSC). Although blends of polypropylenes have been widely studied in the past, there are still on-going debates on true phase behavior (miscibility vs. upper critical solution temperature (UCST) or immiscibility). Except for several earlier theoretical predictions based on the Flory-Huggins mean field theories, UCST behavior had not been experimentally proven for blends of sPP/iPP or aPP/sPP, owing to interference from PP crystallinity. In addition, interaction strength of the blends of different tactic polypropylenes is yet to be established. Using the method of equilibrium melting points, the Flory-Huggins interaction parameter of the aPP/iPP blend was shown to possess a significantly negative value (χ12 = −0.21), which proves that the blend is indeed miscible in the melted amorphous as well as semicrystalline states as previously reported in the literature. However, the interaction parameters for the sPP/iPP and aPP/sPP blends were found to be nearly zero (χ12 = −0.02 and −0.0071, respectively, at T = 150-180 °C), indicating that the interactions in two blends are weak and that the corresponding phase behavior for them borders on immiscibility at ambient temperature. This study also utilized novel approaches in constructing UCST phase diagrams by separating the amorphous phase domains from the crystalline spherulites, yielding data plausible for experimentally determining the UCST in iPP/sPP blend vs. aPP/sPP blend.  相似文献   

15.
The intumescent fire retardant polypropylene (IFP/PP) filled with ammonium polyphosphate (APP), melamine (M), and PA6 (charring agent) is discussed. Intumescing degree (ID) and the char yield were determined. Only when the three main components of IFR coexist at appropriate proportions, it has optimal ID and higher char yield. The appropriate proportion is PA6 : APP : M = 10 : 10 : 5. A new compatibilizer, carboxylated polypropylene (EPP), was added to PP/PA‐6 blend. Flow tests indicated that the apparent viscosity increased with the addition of EPP, thermal characterization suggested that EPP has reacted with PA6, PA6‐g‐EPP cocrystallized with PA6, and EPP‐g‐PA6 cocrystallized with PP; SEM micrographs illustrated that the presence of EPP improved the compatibility of PP and PA6. All the investigations showed that EPP was an excellent compatibilizer, and it was a true coupling agent for PP/PA6 blends. Using PA6 as a charring agent resulted in the IFR/PP dripping, which deteriorated the flammability properties. The addition of nano‐montmorillonite (nano‐MMT) as a synergistic agent of IFR enabled to overcome the shortcoming. The tensile test testified that the addition of nano‐MMT enhanced the mechanical strength by 44.3%. SEM showed that nano‐MMT improved the compatibility of the composites. It was concluded that the intumescent system with nano‐MMT was an effective flame retardant in improving combustion properties of polypropylene. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 739–746, 2006  相似文献   

16.
Blending polypropylene to recycled PA6 industrial wastes at different compositions, with and without compatibilizer PPgMA was produced in a corotating twin screw extruder where, polypropylene acts as the polymer matrix and polyamide as the dispersed phase. Several techniques were used to investigate the morphology, thermal, viscoelastic and tensile properties of these blend. Binary PP/PA6 blends showed the presence of PA6 particles dispersed in the PP continuous phase and exhibited a coarse morphology. Increasing PA6 contents in the blend increased their crystallinity and their size and improved the tensile properties at weak deformation. In addition to compatibilizer PPgMA, the morphology shows lower diameters and a decrease in size of the dispersed PA6 particles. The interfacial adhesion was also improved, as a result of the creation of an interphase that was formed by the interaction between the formed PPgPA6 copolymer in situ and both phases. This interphase induced an improvement in tensile properties. The PPgPA6 copolymer generated by the interphase was identified with DMA analysis thanks to an additional transition in loss modulus curves. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
A series of blends of polypropylene (PP)–polyamide‐6 (PA6) with either reactive polyethylene–octene elastomer (POE) grafted with maleic anhydride (POE‐g‐MA) or with maleated PP (PP‐g‐MA) as compatibilizers were prepared. The microstructures and mechanical properties of the blends were investigated by means of tensile and impact testing and by scanning electron microscopy and transmission electron microscopy. The results indicated that the miscibility of PP–PA6 blends was improved with the addition of POE‐g‐MA and PP‐g‐MA. For the PP/PA6/POE‐g‐MA system, an elastic interfacial POE layer was formed around PA6 particles and the dispersed POE phases were also observed in the PP matrix. Its Izod impact strength was four times that of pure PP matrix, whilst the tensile strength and Young's modulus were almost unchanged. The greatest tensile strength was obtained for PP/PA6/PP‐g‐MA blend, but its Izod impact strength was reduced in comparison with the pure PP matrix. © 2002 Society of Chemical Industry  相似文献   

18.
The dynamic rheological behavior is measured by small amplitude oscillatory shear on rotational rheometer for polypropylene/polyamide 6 (PP/PA6) blends compatibilized by a polypropylene grafted maleic anhydride (PP‐g‐MAH). Scanning electron microscope (SEM) results show that the PP/PP‐g‐MAH/PA6 (=100/6/40wt) is sea‐island structure, the PP/PP‐g‐MAH/PA6 (=100/6/60wt) blend is semi‐cocontinuous. Coarse PA6 zones can be observed when the weight ratio is 100/6/80. At low frequency the complex viscosity, dynamic modulus of the PP/PP‐g‐MAH/PA6 (PP/PP‐g‐MAH = 100/6wt) blends first increase then drop with the increase of PA6 weight content in the range of 0–100, the maximum value arrives at the weight content of 60. The Cole–Cole plots as well as the weighted relaxation spectra of the blends have a main arc and a tail when the weight ratio of PP/PP‐g‐MAH/PA6 is in the range of 100/6/20–100/6/60, but have different shapes when the weight ratio increases to 100/6/80 and 100/6/100. The possible reason is the weight ratio of 100/6/80 and 100/6/100 is close to the phase inversion point. In fitting the storage modulus data at low frequency, Palierne's model with two parameters interfacial tension and interfacial shear modulus is better than Bousmina's model. Palierne's model with only one parameter of interfacial tension can not fit the data well. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42091.  相似文献   

19.
The morphology and thermal properties of isothermal crystallized binary blends of poly(propylene-co-ethylene) copolymer (PP-co-PE) and isotactic polypropylene (iPP) with low molecular weight polyethylene (PE) were studied with differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), polarized optical microscopy (POM) and wide-angle X-ray diffraction (WAXD). In PP-co-PE/PE binary blends, however, the connected PE acted as a phase separating agent to promote phase separation for PP-co-PE/PE binary blends during crystallization. Therefore, the thermal properties of PP-co-PE/PE presented double melting peaks of PE and a single melting temperature of PP during melting trace; on the other hand, at cooling trace, the connected PE promoted crystallization rate because of enhanced segmental mobility of PP-co-PE during crystallization. At isothermal crystallization temperature between the melting points of iPP and PE, the binary blend was a crystalline/amorphous system resulting in persistent remarkable molten PE separated domains in the broken iPP spherulite. And then, when temperature was quenched to room temperature, the melted PE separated domains were crystallized that presented a crystalline/crystalline system and formed the intra-spherulite segregation morphology: these PE separated domains/droplet crystals contained mixed diluent PE with connected PE components. On the other hand, in the iPP/PE binary blends, the thermal properties showed only single melting peaks for both PE and iPP. Moreover, the glass transition temperature of iPP shifted to lower temperature with increasing PE content, implying that the diluent PE molecules were miscible with iPP to form two interfibrillar segregation morphologies: iPP-rich and PE-rich spherulites. In this work, therefore, we considered that the connected PE in PP-co-PE functioned as an effective phase separating agent for PP and diluent PE may be due to the miscibility between connected PE and diluent PE larger than that between PP and dispersed PE.  相似文献   

20.
A new kind of β nucleating agent, multi‐wall carbon nanotube (MWCNT)‐supported calcium pimelate was introduced into polyamide 6 (PA 6)/isotactic polypropylene (iPP; 10/90 by weight) blend and the thermal properties, morphology, and mechanical properties were investigated. The results showed that β‐iPP appeared at low content of MWCNT‐supported calcium pimelate which surmounted the α‐nucleating effect of PA 6 for iPP, and the content of β‐iPP increased with increasing content of MWCNT‐supported calcium pimelate. The impact strength, elongation at break, and flexural modulus were improved with increasing content of MWCNT‐supported calcium pimelate without significantly deteriorating the tensile strength. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号