首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multi-anode/cathode microbial fuel cells (MFCs) incorporate multiple MFCs into a single unit, which maintain high power generation at a low cost and small space occupation for the scale-up MFC systems. The power production of multi-anode/cathode MFCs was similar to the total power production of multiple single-anode/cathode MFCs. The power density of a 4-anode/cathode MFC was 1184 mW/m3, which was 3.2 times as that of a single-anode/cathode MFC (350 mW/m3). The effect of chemical oxygen demand (COD) was studied as the preliminary factor affecting the MFC performance. The power density of MFCs increased with COD concentrations. Multi-anode/cathode MFCs exhibited higher power generation efficiencies than single-anode/cathode MFCs at high CODs. The power output of the 4-anode/cathode MFCs kept increasing from 200 mW/m3 to 1200 mW/m3 as COD increased from 500 mg/L to 3000 mg/L, while the single-anode/cathode MFC showed no increase in the power output at CODs above 1000 mg/L. In addition, the internal resistance (Rin) exhibited strong dependence on COD and electrode distance. The Rin decreased at high CODs and short electrode distances. The tests indicated that the multi-anode/cathode configuration efficiently enhanced the power generation.  相似文献   

2.
The present work focuses on the optimization of operating parameters using Box Behnken design (BBD) in RSM to obtain maximum power density from a glycerol based air-breathing T-shaped MFC. The major parameters influencing the experiment for enhancing the cell performance in MFC are glycerol/fuel concentration, anode electrolyte/KOH concentration, anode electrocatalyst loading and cathode electrolyte/KOH concentration. The ambient oxygen is used as the oxidant. The acetylene black carbon (CAB) supported laboratory synthesized electrocatalyst Pd–Pt (16:4)/CAB is used as anode electrocatalyst and commercial Pt (40 wt%)/CHSA as the cathode electrocatalyst. The quadratic model predicts the appropriate operating conditions to achieve highest power density from the laboratory designed T-shaped MFC. The p-value of less than 0.0001 and F-value of greater than 1 i.e., 26.32 indicate that the model is significant. The optimum conditions predicted by the RSM model were glycerol concentration of 1.07 M, anode electrolyte concentration of 1.62 M anode electrocatalyst loading of 1.12 mg/cm2 and cathode electrolyte concentration of 0.69 M. The negligible deviation of only 1.07% between actual/experimental power density (2.76 mW/cm2) and predicted power density (2.79 mW/cm2) was recorded. This model reasonably predicts the optimum conditions using Pd–Pt (16:4)/CAB electrocatalyst to obtain maximum power density from glycerol based MFC.  相似文献   

3.
Micro Fuel cells or microfluidic fuel cells (μMFCs) are one of the most promising power supplies for portable electronics. However, the necessary electrode spacing is required to prevent fuel-crossover and maintain the stable operation, introducing the unavoidable ohmic resistance and retarding the miniaturization. Herein, we propose a novel μMFC device combining the cellulose paper as separator, with selective catalysts at the cathode side to eliminate the unwanted side reactions and increase the system compactness. One single reactant solution containing fuel and electrolyte is applied to keep the device stable operation. The power-generation properties are evaluated in typical alkaline conditions. A great construction simplification makes the device a substantial high-power density of 2.14 W cm?3 and maximum current density of 15.82 A cm?3. The μMFC stacks are arranged in series and parallel manners, which delivers a maximum power output of 23.6 mW and current of 194.6 mA. It is expected that innovative and customizable performance from commercial paper and low-cost carbonaceous catalysts can provide a forum for future advancement in chip-based electrochemical energy generation and storage devices.  相似文献   

4.
Functional role of pre-fermentation of food waste (PFW) was studied to enhance the performance of single chambered microbial fuel cell (MFC) (mediatorless; non-catalyzed graphite electrodes; open-air cathode). Significant improvement in power output was noticed after pre-treatment (391 mV; 530 mA/m2) compared to unfermented waste (275 mV; 361 mA/m2). MFC performance was found to depend on applied organic load and nature of substrate in terms of power generation and substrate degradation. The pre-fermentation of waste facilitated lowering of activation losses and in turn increased the bio-electrochemical activity of biocatalyst, leading to an effective MFC performance. Fuel cell behavior with respect to polarization, anode potential and bio-electrochemical behavior also supported the performance of MFC with PFW. PFW operation showed higher catalytic current in voltammograms with fine catalytic peaks supporting the positive role of pre-fermentation in discharging electrons effectively. VFA and pH profiles also correlated well with power generation and substrate degradation pattern.  相似文献   

5.
Anode materials are important in the power generation of microbial fuel cell. In this study, polyaniline was used as a conducting polymer anode in two chambers MFC. XPS and SEM were used for the characterization of functional groups of anode materials and the morphology. The power generation of microbial fuel cell was elevated by the modification of anode by nitric acid, ethylenediamine, and diethanolamine. The time that MFC reaches its maximum power generation was shortened by modification. Moreover the SEM photos prove that, it causes better attachment of microorganisms as biocatalysts on electrode surface. The best performance of among the MFCs with different anode electrodes, was the system working by polyaniline modified by ethylenediamine as that generated power of 136.2 mW/m2 with a 21.3% Coulombic efficiency.  相似文献   

6.
A direct formate microfluidic fuel cell with cotton thread-based electrodes is proposed. The palladium catalyst is directly coated on cotton threads by repeated dipping method to prepare electrodes, which integrates the flow channel and electrode together and provides exposed active sites for enhancing the mass transfer on the anode and cathode. The aqueous anolyte and catholyte transport through cotton threads by capillary force with aid of gravity, eliminating the use of any external pump and facilitating the integration and miniaturization of the whole system. In the experiment, a three-flow channel structure is employed. The fuel is sodium formate and the oxidant is hydrogen peroxide. 1 M Na2SO4 solution is introduced into the middle channel formed by cotton threads with no catalyst to alleviate the reactant crossover. Performance is evaluated under various catalyst loadings, fuel concentrations and differences in height between the inlet and outlet. Results show that the fuel cell produces an open circuit voltage (OCV) of 1.41 V. The maximum current density of 74.56 mA cm−2 and the peak power density of 24.75 mW cm−2 are yielded when the palladium loading is 1 mg cm−1 and the difference in height between the inlet and outlet is 7 cm, using 4 M HCOONa as fuel. Furthermore, the performance of the fuel cell increases first and then decreases with increasing the palladium loading. The same variation is observed with increasing the fuel concentration. However, the performance gradually increases with increasing the difference in height from 3 cm to 7 cm. The proposed microfluidic fuel cell with cotton thread-based electrodes shows enormous potential as a micro power source for portable devices.  相似文献   

7.
The existing flow channels like parallel and gird channels have been modified for better fuel distribution in order to boost the performance of direct methanol fuel cell. The main objective of the work is to achieve minimized pressure drop in the flow channel, uniform distribution of methanol, reduced water accumulation, and better oxygen supply. A 3D mathematical model with serpentine channel is simulated for the cell temperature of 80 °C, 0.5 M methanol concentration. The study resulted in 40 mW/cm2 of power density and 190 mA/cm2 of current density at the operating voltage of 0.25 V. Further, the numerical study is carried out for modified flow channels to discuss their merits and demerits on anode and cathode side. The anode serpentine channel is unmatched by the modified zigzag and pin channels by ensuring the better methanol distribution under the ribs and increased the fuel consumption. But the cathode serpentine channel is lacking in water management. The modified channels at anode offered reduced pressure drop, still uniform reactant distribution is found impossible. The modified channels at cathode outperform the serpentine channel by reducing the effect of water accumulation, and uniform oxygen supply. So the serpentine channel is retained for methanol supply, and modified channel is chosen for cathode reactant supply. In comparison to cell with only serpentine channel, the serpentine anode channel combined with cathode zigzag and pin channel enhanced power density by 17.8% and 10.2% respectively. The results revealed that the zigzag and pin channel are very effective in mitigating water accumulation and ensuring better oxygen supply at the cathode.  相似文献   

8.
Alkaline-acid direct glycerol fuel cells (AA-DGFC) were fabricated and primarily proven to be used as portable power generating devices. Pt/C catalyst was used as electrocatalyst for both anode and cathode. The optimal operating condition for cathode was firstly tested. Then the effects of types of backing and microporous layer on the cell performance and stability were investigated to obtain the optimal electrode structure. The cell performance was determined by using both chronoamperometry technique at a constant voltage of 0.4 V, and cell polarization with impedance measurement. The maximum peak power density obtained from the cell was 375 mW cm−2 and the highest average current density discharged from the cell was 451 mA cm−2. Non-wetproof carbon cloth is suitable as the backing layer for both the anode and cathode. Although MPL did not directly affect the cell performance, it greatly improved stability of the current discharged during chronoamperometric test. The cathode favors hydrophilic MPL, while hydrophobic MPL was preferred on the anode.  相似文献   

9.
Despite serious methanol crossover issues in Direct Methanol Fuel Cells (DMFCs), the use of high-concentration methanol fuel is highly demanded to improve the energy density of passive fuel DMFC systems for portable applications. In this paper, the effects of a hydrophobic anode micro-porous layer (MPL) and cathode air humidification are experimentally studied as a function of the methanol-feed concentration. It is found in polarization tests that the anode MPL dramatically influences cell performance, positively under high-concentration methanol-feed but negatively under low-concentration methanol-feed, which indicates that methanol transport in the anode is considerably altered by the presence of the anode MPL. In addition, the experimental data show that cathode air humidification has a beneficial effect on cell performance due to the enhanced backflow of water from the cathode to the anode and the subsequent dilution of the methanol concentration in the anode catalyst layer. Using an advanced membrane electrode assembly (MEA) with the anode MPL and cathode air humidification, we report that the maximum power density of 78 mW/cm2 is achieved at a methanol-feed concentration of 8 M and cell operating temperature of 60 °C. This paper illustrates that the anode MPL and cathode air humidification are key factors to successfully operate a DMFC with high-concentration methanol fuel.  相似文献   

10.
Cost, durability, efficiency and fuel utilization are important issues that remain to be resolved for commercialization of proton exchange membrane fuel cells (PEMFC). Anode flow mode, which includes recirculation, dead-ended and exit bleeding operation, plays an important role in fuel utilization, durability, performance and the overall cost of the fuel cell system. Depending on the flow mode, water and nitrogen accumulation in the anode leads to voltage transients and local fuel starvation, which causes cell potential reversal and carbon corrosion in the cathode catalyst layers. Controlled anode exit bleeding can avoid the accumulation of nitrogen and water and improve fuel utilization. In this study, we present a method to control the bleed rate with high precision in experiments and demonstrate that hydrogen utilization as high as 0.9988 for a 25 cm2 single cell and 0.9974 for an 8.17 cm2 single cell can be achieved without significant performance loss. In the experiments, anode pressure is kept at 1 bar higher than the cathode pressure to decrease nitrogen crossover from the cathode, decreasing the crossover from the cathode. Moreover, four load cycle profiles are applied to observe the cumulative loss in the electrochemical surface area (ECSA), which are acquired from cyclic voltammetry (CV) analysis. Experiments confirm that the ECSA loss and severe voltage transients are indicative of fuel starvation induced by prolonged dead-ended or low exit-bleed operation modes whereas bleed rates that are larger than the predicted crossover rate are sufficient to operate the fuel cell without voltage transients and detrimental ECSA loss.  相似文献   

11.
Passive direct methanol fuel cells (DMFCs) are under development for use in portable applications because of their enhanced energy density in comparison with other fuel cell types. The most significant obstacles for DMFC development are methanol and water crossover because methanol diffuses through the membrane generating heat but no power. The presence of a large amount of water floods the cathode and reduces cell performance. The present study was carried out to understand the performance of passive DMFCs, focused on the water crossover through the membrane from the anode to the cathode side. The water crossover behaviour in passive DMFCs was studied analytically with the results of a developed model for passive DMFCs. The model was validated with an in‐house designed passive DMFC. The effect of methanol concentration, membrane thickness, gas diffusion layer material and thickness and catalyst loading on fuel cell performance and water crossover is presented. Water crossover was lowered with reduction on methanol concentration, reduction of membrane thickness and increase on anode diffusion layer thickness and anode and cathode catalyst layer thickness. It was found that these conditions also reduced methanol crossover rate. A membrane electrode assembly was proposed to achieve low methanol and water crossover and high power density, operating at high methanol concentrations. The results presented provide very useful and actual information for future passive DMFC systems using high concentration or pure methanol. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Three types of aerobic bacteria such as Citrobacter freundii, Proteus mirabilis and Bacillus subtilis were evaluated in terms of bioelectricity production using double chambered microbial fuel cell (MFC) with graphite cloth as anode and cathode and Nafion membrane as proton exchange membrane (PEM). Performance of MFC was studied with addition of glucose. Cyclic voltammetry (CV) experiments showed the presence of peaks at −92 and −163 mV vs Ag/AgCl for C. freundii and P. mirabilis indicating their electrochemical activity without an external mediator. Potential time experiments showed the potential of MFC solely depend on change in anode potential rather than cathode potential. The internal resistance of MFC containing B. subtilis was lower than C. freundii and P. mirabilis. Fuel cell performance was evaluated employing polarization curve and power output along with cell potentials. MFC containing B. subtilis with neutral red mediator showed current output of 112 mA m−2 at external resistance of 0.3 kΩ which is higher than the current outputs from MFC containing C. freundii and P. mirabilis. The relative efficiency of power generation observed in aerobic microenvironment may be attributed to the effective substrate oxidation and good biofilm growth observed on the anodic surface.  相似文献   

13.
Microbial fuel cells (MFC) hold promise as a green technology for bioenergy production. The challenge is to improve the engineering design while exploiting the ability of microbes to generate and transfer electrons directly to electrodes. A strategy using a combination of improved anode design and an enrichment process was formulated to improve power densities. The design was based on a flow-through anode with minimal dead volume and a high electrode surface area per unit volume. The strategy focused on promoting biofilm formation via a combination of forced flow through the anode, carbon limitation, and step-wise reduction of external resistance. The enrichment process resulted in development of exoelectrogenic biofilm communities dominated by Anaeromusa spp. This is the first report identifying organisms from the Veillonellaceae family in MFCs. The power density of the resulting MFC using a ferricyanide cathode reached 300 W m−3 net anode volume (3220 mW m−2), which is about a third of what is estimated to be necessary for commercial consideration. The operational stability of the MFC using high specific surface area electrodes was demonstrated by operating the MFC for a period of over four months.  相似文献   

14.
Electricity production from carbon monoxide (CO) in a microbial fuel cell (MFC) has recently been demonstrated. Efficient operation of this MFC requires a CO-tolerant and preferably inexpensive cathode. Pyrolised CoTMPP, FeTMPP, and Co/FeTMPP gas diffusion cathodes were tested in MFCs operated on acetate or CO. When the MFC was fed with acetate the best cathode performance was obtained when using a Co/FeTMPP (3:1) cathode with a Me catalyst load of 0.5 mg cm−2, although this performance was slightly lower than that obtained with a cathode containing 0.5 mg-Pt cm−2. Tests using a MFC operated on CO showed a higher power output when using the Co/FeTMPP cathode when compared both with CoTMPP and Pt cathodes.  相似文献   

15.
The electrochemical oxidation of catalytic grown carbon fiber has been examined in a direct carbon fuel cell (DCFC). The single cell contains a composite electrolyte layer made of a samarium doped ceria (SDC) and a eutectic carbonate phase. The cathode is a mixture of lithiated NiO and the composite electrolyte, while the anode is composed of NiO and SDC powder. Catalytic carbon fiber and the eutectic carbonate is premixed and used as the feed of the anode fuel. The effects of the cell pellet configuration, cathode gas composition and the operation temperature on the DCFC performance have been examined in this work. At 700 °C, the maximum power output achieves 112 mW cm−2 with a current density of 249 mA cm−2. The anode off-gas is analyzed with a gas chromatograph, and the Boudouard reaction is found suppressed by the electrical field in the fuel cell operation.  相似文献   

16.
In this study, a composite electrode combined of a graphite fiber brush and carbon granules (MFC-GFB/GG) was adopted as the anode of a tubular microbial fuel cell (MFC). Compared with an MFC with graphite granules (MFC-GG) and an MFC with a graphite fiber brush (MFC-GFB), MFC-GFB/GG showed a longer lag time during the start-up process, while it reached the highest operating voltage at 50 Ω. Furthermore, during the stable operation, the MFC-GFB/GG achieved the highest power density of 66.9 ± 1.6 W m−3, which was about 5.3 and 1.2 times as that of MFC-GG and MFC-GFB, respectively. The highest performance of the MFC-GFB/GG can be attributed to the highest active biomass content on the electrode and the smallest internal resistance of the MFC. The optimum COD concentration was found to be 500 mg COD L−1 for MFC-GFB/GG.  相似文献   

17.
The methanol barrier layer adopted for high-concentration direct methanol fuel cells (HC-DMFCs) increases water transport resistance, and makes water management in HC-DMFCs more challenging and critical than that in the conventional direct methanol fuel cell (DMFC) without a methanol barrier layer. In the semi-passive HC-DMFC used in this work, oxygen was actively supplied to the cathode side while various concentrated methanol solutions, 4 M, 8 M, 16 M, and neat methanol, were passively supplied from the anode fuel reservoir. The effects of the cathode relative humidity, cathode pressure, and oxygen flow rate on the water crossover coefficient, fuel efficiency, and overall performance of the fuel cell were studied. Results showed that electrolyte membrane resistance, which was determined by its water content, was the predominant factor that determined the performance of a HC-DMFC, especially at a high current density. A negative water crossover coefficient, which indicated that water flowed back from the cathode through the electrolyte membrane to the anode, was measured when the methanol concentration was 8 M or higher. The back flow of water from the cathode is a very important water supply source to hydrate the electrolyte membrane. The water crossover coefficient was decreased by increasing the cathode relative humidity and back pressure. Water flooding at the cathode was not severe in the HC-DMFC, and a low oxygen flow rate was preferred to decrease water loss and yield a better performance. The peak power density generated from the HC-DMFC fed with 16 M methanol solution was 75.9 mW cm−2 at 70 °C.  相似文献   

18.
Although the first abiotically catalyzed glucose fuel cells have already been developed as sustainable power supply for medical implants in the 1970s, no detailed information concerning the fabrication of these devices has been published so far. Here we present a comprehensive manufacturing protocol for such a fuel cell, together with a detailed analysis of long-term performance in neutral buffer containing physiological amounts of glucose and oxygen. In air saturated solution a power density of (3.3 ± 0.2) μW cm−2 is displayed after 10 days of operation that gradually decreases to a value of (1.0 ± 0.05) μW cm−2 in the course of 224 days. A novelty of this work is the characterization of fuel cell performance with individually resolved electrode potentials. Using this technique, we can show that the major part of performance degradation originates from a positive shift of the anode potential, indicating that a more poisoning-resistant glucose oxidation catalyst would improve the degradation behavior of the fuel cell. As further factors influencing performance an incomplete reactant separation and a mass transfer governed cathode reaction under the relatively low oxygen partial pressures of body tissue have been identified. Consequently we propose an oxygen depleting electrode interlayer and the application of more effective oxygen reduction catalysts as promising strategies to further improve the fuel cell performance under physiological concentrations of glucose and oxygen.  相似文献   

19.
TTF-TCNQ has been used for the first time as a mediator in a direct glucose fuel cell operating on gas-phase oxygen. It has been shown that TTF-TCNQ forms highly irregular porous structure, which emphasizes the importance of optimization of mass transport and kinetic resistance in the catalyst layer. Kinetics resistance can be optimized by variation of the mediator and/or enzyme loading, while mass transport resistance mainly by the variation of other structural parameters such as electrode thickness. The optimized anode reached limiting current densities of nearly 400 μA cm−2 in presence of 5 mM glucose under rotation. The enzymatic fuel cell exhibited unexpectedly high OCV values (up to 0.99 V), which were tentatively ascribed to different pH conditions at the anode and the cathode. OCV was influenced by glucose crossover and was decreasing with an increase of glucose concentration or flow rate. Although the performance of the fuel cell is limited by the enzymatic anode, the long-term stability of the fuel cell is mainly influenced by the Pt cathode, while the enzymatic anode has higher stability. The fuel cell delivered power densities up to 120 μW cm−2 in presence of 5 mM glucose, depending on the glucose flow rate.  相似文献   

20.
A woven thread-based microfluidic fuel cell based on graphite rod electrodes is proposed. Both inter-fiber gaps and inter-weave spaces could provide flow channels for the liquid transport through the woven cotton thread. Therefore, no external pumps are required to maintain the co-laminar flow, benefiting for the integration and miniaturization. In the experiment, sodium formate and hydrogen peroxide are used as fuel and oxidant, respectively. To improve the electrochemical reaction kinetics, KOH and H2SO4 serve as supporting electrolyte at the anode and cathode, respectively. Na2SO4 solution is used as the electrolyte to separate the cathode and anode in the middle flow channel and alleviate the reactant crossover. The open circuit potential of the fuel cell achieves 1.44 V and the maximum current density and power density are 56.6 mA cm?2 and 20.7 mW cm?2, respectively. Moreover, the cell performance reduces with increasing the electrode distance due to a high ohmic resistance. With an increase in the fuel concentration from 1 M to 4 M, the performance increases and it reduces with further increasing to 6 M owing to a correspondingly low flow rate. The highest fuel utilization rate reaches 10.9% at 4 M fuel concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号