首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Upper Mississippi River is a dynamic floodplain river that has been largely transformed by navigational levees and dams since the 1930s. The pools upstream of each dam are lake‐like and only about the upper third of each reach retains a riverine character. In contrast, the Wisconsin River is not managed for commercial navigation and today its lower 149 km represent one of the least‐degraded large river reaches in central North America. Riverine reaches in both the Mississippi and Wisconsin rivers have similar macro‐habitats including numerous islands, large side channels, and connected backwaters and floodplain lakes. In this study, shoreline electrofishing samples were collected during summer 2002 and 2003 to characterize resident fish assemblages. We compared fish species abundance, biomass, and biotic integrity along main and side channel borders between the Upper Mississippi River and the Lower Wisconsin River. We expected that, in the absence of environmental degradation, fish composition and structure would be similar between the Mississippi and Wisconsin rivers, and between channel types within each river. Nonmetric multidimensional scaling and redundancy analysis revealed that fish species in the Mississippi River, unlike in the Wisconsin River, were characteristic of non‐riverine habitats. We consider non‐riverine fish assemblages indicative of environmental impairment. The main and side channel sites in the Mississippi River had more variable fish assemblages than the Wisconsin River. Analyses of fish index of biotic integrity scores showed that environmental condition was excellent for both channel types in the Wisconsin River, whereas in the Mississippi River the side channel was rated good and the main channel only fair. We conclude that differences between the two rivers and between channel types of the Mississippi River are consistent with direct and indirect effects of navigation. This study demonstrates the utility of a fish index of biotic integrity, an inexpensive and rapid bioassessment tool, for detecting change in ecological health on one of the world's largest rivers. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Floodplain habitats provide critical spawning and rearing habitats for many large‐river fishes. The paradigm that floodplains are essential habitats is often a key reason for restoring altered rivers to natural flow regimes. However, few studies have documented spatial and temporal utilization of floodplain habitats by adult fish of sport or commercial management interest or assessed obligatory access to floodplain habitats for species' persistence. In this study, we applied telemetry techniques to examine adult fish movements between floodplain and mainstem habitats, paired with intensive light trap sampling of larval fish in these same habitats, to assess the relationships between riverine flows and fish movement and spawning patterns in restored and unmodified floodplain distributaries of the Apalachicola River, Florida. Our intent is to inform resource managers on the relationships between the timing, magnitude and duration of flow events and fish spawning as part of river management actions. Our results demonstrate spawning by all study species in floodplain and mainstem river habitat types, apparent migratory movements of some species between these habitats, and distinct spawning events for each study species on the basis of fish movement patterns and light trap catches. Additionally, Micropterus spp., Lepomis spp. and, to a lesser degree, Minytrema melanops used floodplain channel habitat that was experimentally reconnected to the mainstem within a few weeks of completing the restoration. This result is of interest to managers assessing restoration activities to reconnect these habitats as part of riverine restoration programmes globally. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Small‐bodied, riverine minnows that historically characterized fish assemblages of Great Plains rivers in North America have declined because of river fragmentation, dewatering, river channel degradation, river salinization and nonnative species introductions. The Pecos bluntnose shiner Notropis simus pecosensis, a member of this guild, persists in one segment of the Pecos River, New Mexico, USA. We characterized habitat associations for the species at two spatial scales. In general, N. s. pecosensis associated with fluvial habitats, but velocity association depended on body size, with larger individuals using swifter habitats. All N. s. pecosensis associated with relatively low depths (3–51 cm), which were most abundant in sites with relatively wide river channels (>25 m), especially when discharge was between 0.5 and 4.0 m3 s?1. The Pecos River sub‐segment that is occupied by the core population of N. s. pecosensis (V‐ii) had a unique combination of being buffered from direct dam effects by intervening segments and sub‐segments, high sub‐segment length, substantial sediment inputs from numerous uncontrolled tributaries, substantial base flow provided by irrigation return flows and groundwater inflows, high channel width in relation to discharge and low salinity. Although no unoccupied Pecos River segment appears to be suitable for N. s. pecosensis, habitat restoration opportunities exist within all occupied sub‐segments (V‐i, V‐ii and V‐iii) via base flow enhancement and river channel restoration. Restoration that offsets chronic effects of dams may be necessary to conserve the species. Restoration would also benefit other rare riverine minnows that coexist with N. s. pecosensis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Southern China—i.e. China south of the Chang Jiang (Yangtze River)—has a monsoon climate with pronounced wet and dry seasons and consequent effects on river discharge. There is considerable inter-year variation in the duration and intensity of the monsoon, and the region experiences frequent floods and droughts which cause considerable human misery. The importance of floods as an incentive for river regulation is apparent from the fact that 10% of China's area, inhabited by 65% of the population and responsible for 70% of the agricultural and industrial output, is below the flood level of major rivers. Irrigation and hydroelectric power are additional benefits to be derived from river regulation. China has a 4000 year history of river regulation, but most of the changes that have been made to riverine environments have not taken account of the ecological consequences. This review considers the ecological implications of planned or existing schemes for the regulation of southern Chinese rivers. Particular attention is paid to the Chang Jiang and Zhujiang (Pearl River) which, by volume of discharge, are the two largest rivers in China. Large-scale water-transfer projects and the planned construction of the biggest dam in the world (the Three Gorges High Dam) on the Chang Jiang have the potential to affect fisheries stocks and endangered fish species, to alter inundation patterns in wetlands of international conservation significance and may contribute to the extinction of the endemic and highly endangered Chinese alligator (Alligator sinensis) and Chinese river dolphin (Lipotes vexillifer). In addition, deforestation and soil erosion in the Chang Jiang basin have given rise to siltation and degradation of floodplain habitats. In the Zhujiang, dam construction has caused reductions in fisheries stocks but here, as elsewhere in China, the ecologically damaging consequences of river regulation are exacerbated by overfishing and increasing pollution of rivers by sewage, pesticides and industrial wastes.  相似文献   

5.
While the four‐dimensional nature of river ecosystems has been recognized for nearly two decades, the role of lateral complexity has rarely been factored into studies of zooplankton ecology. We examined the importance of hydrologic retention areas (slackwaters) near islands and embayments of the St. Lawrence River for densities, fecundity, and diel migration of planktonic microcrustaceans. Densities of cladocera and copepods (nauplii and adult stages of cyclopoids and calanoids) were sampled from surface and deeper layers both at night (2100–0100 h, near the new moon) and during the day (1000–1400 h) for channel (deep‐fast), offshore (shallow‐slower), and inshore (shallow‐stagnant) habitats. Average zooplankton densities increased laterally from the main channel into the slackwaters with the exception of calanoid copepods, which peaked in the intermediate depths and flows of the offshore habitats. Although the ratio of males to females for the calanoid Eurytemora affinis and the cladoceran Bosmina spp. did not differ among habitats, a greater percentage of ovigerous cladoceran females were present in slackwaters than in channel habitats. Densities of microcrustaceans were generally greater during the night than day, suggesting diel vertical migration. By demonstrating both lateral and diel differences in the spatial distribution of riverine zooplankton, we refute the view of large rivers as well‐mixed homogenous systems. To the contrary, the two non‐random patterns that we document imply that there is an abiotic template that at least microcrustacean potamoplankton can exploit. In turn this suggests more research into the ecological significance of the pelagic structure of other large rivers like the St. Lawrence is justified. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
The annual hydrograph of large rivers, including flood pulses and low‐flow periods, is believed to play a primary role in the productivity of biota associated with these ecosystems. We investigated the relationship between river hydrology and Interior least tern (Sterna antillarum) reproductive success on the Lower Mississippi River from April to July 1986–1993. The number of fledglings produced per adult pair was negatively correlated with July mean (r=?0.95, p=0.0004) and July maximum river elevation (r=?0.97, p=0.0001), but no other aspects of river hydrology were related to tern reproduction. Low‐water elevations in July may benefit least tern reproductive success by increasing sand island area or the area of shallow‐water habitat that surrounds islands. Loss of deep‐water habitats in conjunction with an increase in shallow habitat during stage decreases may concentrate fish prey in shallow‐water habitats and backwater areas, thereby increasing food availability during chick‐rearing. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Identifying the appropriate scale at which habitat is biologically relevant to riverine fishes in large, sand‐dominated rivers is a challenge. Alluvial islands are important to several of these fishes throughout the central USA, but there is a paucity of information on island habitat features that restoration efforts should try to replicate. We determined the physical characteristics of two island complexes in the middle Mississippi River that facilitate the settlement and survival of age‐0 shovelnose sturgeon Scaphirhynchus platorynchus at relatively large (mean 39,000 m2) and small (mean 320 m2) scales. Depth (m), flow rate (m s?1), substrate (sand, rock, silt) and vegetation were quantified at these two scales using hydroacoustic techniques (split‐beam sonar and acoustic Doppler current profiler). Abiotic attributes in the surrounding littoral zone of the island complexes were highly correlated but differed depending on location. At the coarse spatial scale, vegetation was positively related to shovelnose sturgeon abundance. At the fine spatial scale, age‐0 shovelnose sturgeon were restricted to flow rates < 0.89 m s?1, with abundance peaking at about 0.40 m s?1. However, heterogeneity in depth and flow was important, and sturgeon abundance peaked at intermediate variability in these two abiotic attributes. A computer‐generated model of the habitat surrounding islands suggests that these habitats are diverse and may provide flow refugia and foraging patches for shovelnose sturgeon. We submit the results presented here that can contribute to a hierarchical model for island restoration in large rivers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Damming of rivers disrupts migration of fish and results in lotic habitats being both scarcer and spaced further apart, ultimately affecting riverine fish communities. Nature‐like fishways are often designed as bypass channels, constructed with natural materials that reroute part of the water around weirs and dams, restoring longitudinal connectivity as well as forming nature‐mimicking habitats. We evaluated the potential of such bypasses to function as compensatory lotic habitats by comparing fish fauna in 23 bypasses to adjacent lotic stream habitats in a same‐river pairwise design. Bypasses were narrower, shallower, and less shaded than adjacent stream habitats, but very few significant differences could be detected in the fish communities, indicating the potential of such nature‐like fishways to constitute compensatory lotic habitats for fish. Analyses also indicated how bypass design may be altered to favour or disfavour certain target species. Generally, narrower and shallower bypasses with high gradient favoured brown trout (Salmo trutta), whereas European eel (Anguilla anguilla) were more abundant at sites with lower gradient. Finally, to increase the impact of these compensatory habitats on running water ecosystems, we suggest that the size of bypasses should be maximized in areas where natural stream habitats have been lost.  相似文献   

9.
Serial impoundment of major rivers leads to alterations of natural flow dynamics and disrupts longitudinal connectivity. Catostomid fishes (suckers, family Catostomidae) are typically found in riverine or backwater habitats yet are able to persist in impounded river systems. To the detriment of conservation, there is limited information about distribution of catostomid fishes in impounded rivers. We examined the longitudinal distribution of catostomid fishes over 23 reservoirs of the Tennessee River reservoir cascade, encompassing approximately 1600 km. Our goal was to develop a basin‐scale perspective to guide conservation efforts. Catostomid species composition and assemblage structure changed longitudinally along the reservoir cascade. Catostomid species biodiversity was greatest in reservoirs lower in the cascade. Assemblage composition shifted from dominance by spotted sucker Minytrema melanops and buffalos Ictiobus spp. in the lower reservoirs to carpsuckers Carpiodes spp. midway through the cascade and redhorses Moxostoma spp. in the upper reservoirs. Most species did not extend the length of the cascade, and some species were rare, found in low numbers and in few reservoirs. The observed gradients in catostomid assemblages suggest the need for basin‐scale conservation measures focusing on three broad areas: (1) conservation and management of the up‐lake riverine reaches of the lower reservoirs, (2) maintenance of the access to quality habitat in tributaries to the upper reservoirs and (3) reintroductions into currently unoccupied habitat within species' historic distributions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
探究水利工程干扰下的鱼类生境变化特征是维护河流生态健康的基础性研究。以汉中平川段内汉江三桥桥闸下游10 km为研究河段,利用水文学法和栖息地模拟法计算了生态流量。建立了河段二维水动力学模型,选用宽鳍鱲为目标鱼种,依据其对水深和流速的适宜性曲线确定了流量变化下的生境面积,并采用生境质量分级分析了不同流量响应鱼类生境的变化特征。研究结果表明:两种方法计算出河流生态流量相近,分别为54.3和53.1m~3/s,最终适宜流量为47.8~54.3 m~3/s;在流量8.8~212.7 m~3/s时,相比中等和低质量生境,高质量生境面积随流量的波动更为显著,呈现先升后降的趋势,212.7 m~3/s以上流量的各级生境面积随流量变化较小;高质量生境多分布于两岸和冷水河交汇口,中等质量生境主要分布在河段下游;低质量生境位置相对不固定;研究成果可为桥闸运行和河流鱼类保护提供重要参考依据。  相似文献   

11.
Reduced mixing of deep pools attributable to river regulation and downstream flow suppression can lead to an increase in the magnitude, frequency and duration of thermal stratification in riverine pools over summer. This study monitored hourly temperature profiles with five thermistor loggers in a 15 m deep natural pool over 12 months from May 2005. Detailed bathymetric and topographic survey data and HEC‐RAS hydraulic modelling of layer Richardson numbers were used to extend thermistor observations of flow‐related stratification breakdown in this single deep pool to a 20 km long pool‐riffle dominated river reach below the dam. Reach‐wide breakdown of persistent thermal stratification in deep pools over spring and summer was likely to be achieved by a flow rate of 3000 ML day?1. This flow rate approximates the long‐term mean annual natural flow (2860 ML day?1) and the 16th flow duration percentile (mean daily flows equalled or exceeded for 16% of time), indicating that thermal stratification of the deepest pools in the Shoalhaven River is a common, natural phenomenon not solely attributable to river regulation. Should reasonably consistent hydraulic geometry relationships exist between low salinity rivers in similar climatic, hydrologic and geomorphic settings, then we suggest that the mean annual natural flow is likely to achieve widespread breakdown of thermal stratification across lengthy reaches of similar pool‐riffle sequence rivers elsewhere. Hourly mean wind speeds of up to 65 km h?1 recorded at an automated weather station 25 km from the study site were found to suppress of the degree of thermal stratification in the study pool but did not achieve deep mixing of persistent seasonal thermoclines. Large, rapid and sustained air temperature decreases associated with the passage of cold fronts across southeastern Australia in summer were found to be more effective than wind and achieved mixing to depths of at least 4.2 m. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Effective management and conservation of riverine fish species relies on identification of habitats that contribute recruits to fish populations. Paddlefish are an important commercial and recreational species inhabiting North American large rivers. However, despite the knowledge of adult paddlefish movement patterns in large rivers, their principal natal environments and early life dispersal patterns remain unknown. Paddlefish dentary microchemistry can be used to identify natal environment of fish in large river networks such as the middle Mississippi River (MMR) and tributaries. The goals of this study were to (a) use dentary microchemistry (strontium:calcium ratios; Sr:Ca) to determine natal environment and potential drift for age‐0 paddlefish collected from the MMR and (b) assess whether MMR reach or year of collection influenced the percentage of recruits originating from different rivers. Age‐0 paddlefish were collected during 2010–2011 from two reaches of the MMR (upstream and downstream of the Kaskaskia River confluence). Water samples from the MMR and tributaries (upper Mississippi, Missouri, Illinois, Osage, and Kaskaskia Rivers) were collected during 2006–2016. Water Sr:Ca differed among rivers, enabling identification of natal environment for individual fish using dentary core Sr:Ca. The MMR (44–69% of fish sampled) and Missouri River (25–45% of fish sampled) were the primary natal environments for age‐0 paddlefish across both river reaches and collection years. The upper Mississippi River and smaller tributaries contributed few recruits (<13% of fish sampled). Conservation of paddlefish populations should include maintenance or improvement of connectivity between river reaches used for spawning and juvenile rearing and stock assessments of riverine paddlefish may need to be conducted at a riverscape scale because multiple rivers can contribute to paddlefish recruitment in a particular river reach.  相似文献   

13.
We employed an integrated system of airborne remote sensing and ground surveys for regional mapping of instream habitats under variable flows over a 70 km section of the Lower Yakima River in southern Washington, USA. Airborne multispectral digital imagery was obtained in conjunction with field survey measurements and used to quantify the spatial extent, condition and temporal changes of selected river habitat characteristics under two different flows (14 and 28 m3 s?1). Under each flow, geomorphic measures were quantified (e.g. channel complexity, number and size of habitats). Water depth and velocity were also classified for instream habitats, and temperature and turbidity were recorded. Remote sensing classification accuracies for islands, exposed rocks and water surfaces were greater than 99%, while more detailed depth/flow classifications were less accurate (68% and 72%, for the high and low flows, respectively). While high turbidity (>4 Nephelometric Turbidity Units (NTU)), shadows and bidirectional reflectance factor reduced classification accuracies, the overall effect of these factors was minimal. Under the low‐flow situation, off‐channel habitats were less abundant, more isolated and had shallower depths and warmer temperatures. Our analysis suggests that airborne multispectral imagery, coupled with appropriate ground truth data, can be a viable method for regional mapping of diverse riverine habitats under variable flows. We concluded from this analysis that the higher flow situation provided substantially better habitat than currently exists in the Lower Yakima River. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Habitat associations of upper Volga river fishes are defined within a cycle of spawning, feeding and overwintering migrations. The migration cycles of resident riverine fishes are categorized as obligate rheophils, limno-rheophils and limnophils. Forty-four fish species in 14 families occurred in the upper Volga River before regulation. Four mainstem reservoirs were constructed on the upper Volga between 1937 and 1957: Ivankovo, Uglich, Rybinsk and Gorky. They are maintained in a stage of delayed and sustained annual flood pulse. Additional impacts of reservoir construction include the creation of a new pelagic habitat, replacement of floodplains by lacustrine littoral and sublittoral habitats, creation of a complex bathyal habitat from former river channels and replacement of riverine flow patterns by pelagic water mass circulations. Populations of rheophilic species declined, while a new pelagophilic fish guild developed. Forty-six fish species are now present; seven species were lost and nine introduced after impoundment. Spawning, feeding and wintering habitats are outlined for reservoir guilds. Ichthyomass increased three to four times following reservoir construction and commercial fish harvest from Rybinsk Reservoir between 1945 and 1992 ranged from 2220 to 4304 t/y. Reservoirs of the upper Volga have limited bioproductivity due to a deficiency and uneven distribution of reproductive habitats, decreasing bottom irregularity, seasonal anomalies of flooding and draining of the littoral and sublittoral and underestimating the importance of tributaries. Lack of littoral reproductive habitat can be remedied by increasing the area of protected littoral through the construction of chains of small islands, diking and reclamation of bogged areas. Improved reproduction of migrating local stocks can be achieved by removing sand bars across tributary mouths, construction of artificial spawning grounds and restoration and preservation of preferred habitats in the main channel.  相似文献   

15.
Channel catfish Ictalurus punctatus is a highly mobile species and is known to make extensive seasonal movements in lotic systems. Dams have been suggested to detrimentally affect this species, although abundant channel catfish populations are known to occur in many fragmented rivers. To examine factors that allow channel catfish to persist in impounded rivers, we assessed relative abundance of channel catfish in three impounded and three flowing sites of the Fox River, Illinois, USA. Radiotelemetry was used to determine movement and habitat use patterns of channel catfish among flowing and impounded areas. Relative abundance of channel catfish was consistently higher at flowing sites than at impounded sites during summer. Several radio‐tagged channel catfish moved downstream into impounded areas in fall, and all tagged individuals were found in impounded areas during winter. The majority of tagged channel catfish moved upstream into flowing areas during spring. Channel catfish used a wide range of depths (0.28–2.60 m), and were always found in current velocities less than 0.50 m s?1. They selected most strongly for coarse substrates, but were infrequently found near cover. Although low‐head dams restrict the movements of channel catfish, impounded areas appear to provide overwintering habitats that may eliminate the need for seasonal long‐distance movements. Small run‐of‐river impoundments, however, may contain unsuitable conditions for channel catfish during other seasons. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
To ensure a long-term ecological stability, rivers need areas that are available at different discharge situations as highly productive habitats which are connected with the river. These retention areas or biologically active zones are important for the riverine communities as refuge (e.g. benthic macroinvertebrates and fish) or the development of benthic algae communities as basis for the riverine food web as well as retention zones to perform various ecosystem services (e.g. nutrient retention). Especially during low water level situations, the river shorelines and the river bed itself are of significant importance, but highly degraded in intensely regulated river systems such as the Danube River. A basic understanding of the processes and functional correlations is required to avoid negative consequences of engineering measures applied and to improve the ecological conditions. In the framework of the pilot project Bad Deutsch-Altenburg in the Danube River east of Vienna not only monitoring the implementation of engineering measures is required, but also scientific knowledge gained about basic ecological relationships and potential responses of riverine communities. This article presents results of several years of investigations on the distribution and development of three organism groups (benthic algae, benthic macroinvertebrates and fish) along different riparian structures and in the river bed of the Danube River.  相似文献   

17.
Sufficient genetic diversity can aid populations to persist in dynamic and fragmented environments. Understanding which mechanisms regulate genetic diversity of riverine fish can therefore advance current conservation strategies. The aim of this study was to investigate how habitat fragmentation interacted with population genetic diversity and individual behaviour of freshwater fish in large river systems. We studied a population of the long‐distance migratory, iteroparous freshwater salmonid European grayling (Thymallus thymallus) in south‐eastern Norway. Genotyping (n = 527) and radio‐tracking (n = 54) of adult fish throughout a 169‐km river section revealed three major migration barriers limiting gene flow and depleting genetic diversity upstream. Individuals from upstream areas that had dispersed downstream of barriers showed different movement behaviour than local genotypes. No natal philopatry was found in a large unfragmented river section, in contrast to strong fidelity to spawning tributaries known for individuals overwintering in lakes. We conclude that (a) upstream sub‐populations in fragmented rivers show less genetic variation, making it less likely for them to adapt to environmental changes; (b) fish with distinct genotypes in the same habitat can differ in their behaviour; (c) spawning site selection (natal philopatry) can differ between fish of the same species living in different habitats. Together this implies that habitat loss and fragmentation may differently affect individual fish of the same species if they live in different types or sections of habitat. Studying behaviour and genetic diversity of fish can unravel their complex ecology and help minimize human impact.  相似文献   

18.
Insight into environments that contribute recruits to adult fish stocks in riverine systems is vital for effective population management and conservation. Catfishes are an important recreational species in the Mississippi River and are commercially harvested. However, contributions of main channel and tributary habitats to catfish recruitment in large rivers are unknown. Stable isotope and trace elemental signatures in otoliths are useful for determining environmental history of fishes in a variety of aquatic systems, including the Mississippi River. The objectives of this study were to identify the principal natal environments of channel catfish Ictalurus punctatus and blue catfish Ictalurus furcatus in the Middle Mississippi River (MMR) using otolith stable oxygen isotopic composition (δ18O) and strontium : calcium ratios (Sr : Ca). Catfishes were sampled during July–October 2013–2014, and lapilli otoliths were analysed for δ18O and Sr : Ca. Water samples from the MMR and tributaries were collected seasonally from 2006 to 2014 to characterize site‐specific signatures. Persistent differences in water δ18O and Sr : Ca among the MMR and tributaries (including the upper Mississippi, Illinois, and Missouri rivers as well as smaller tributaries) were evident, enabling identification of natal environment for individual fish. Blue and channel catfish stocks in the MMR were primarily recruited from the large rivers (Missouri and Mississippi) in our study area, with minimal contributions from smaller tributaries. Recruitment and year class strength investigations and efforts to enhance spawning and nursery habitats should be focused on in large rivers with less emphasis on smaller tributaries. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Microinvertebrates play a critical role in riverine food webs, and recent studies have hypothesized that slackwaters, non‐flowing regions associated with the main channel, are important for their reproduction and recruitment. However, little is known regarding the population and community dynamics of microinvertebrate communities in slackwater regions, or how they compare with those in mid‐channel regions. This study examined microinvertebrate communities in the epibenthic and pelagic zones of slackwater and mid‐channel regions (i.e. four habitats) of an Australian floodplain river in relation to physico‐chemical parameters and food availability (as estimated by chlorophyll‐a concentration) between September 2005 and November 2006. Results from this study indicate that microinvertebrate abundance and diversity were greater in slackwater habitats than mid‐channel habitats overall, corresponding with the slower current velocities associated with the former. Nevertheless, communities in all four habitats were most abundant and diverse in late spring (coinciding with an increase in water temperature), and followed similar seasonal trajectories in terms of density, taxon richness and community structure. These findings support the view that slackwaters are important for in‐channel microinvertebrate production, and suggest that animals frequently disperse (either actively or passively) among slackwater and other main channel regions year round. Given the critical importance of microinvertebrates in riverine food webs, rivers should be managed with a view to maintaining a natural variety of accessible slackwater regions in order to support the production and survival of microinvertebrate communities. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Littoral habitats in large rivers are influenced to varying degrees by changes in discharge. Irrigation abstractions can increase the amount of habitat that would naturally be dewatered during low flow periods and therefore it is important to have some knowledge of the potential impact this may have on riverine macroinvertebrates. The macroinvertebrate assemblages of common littoral habitats in riffles, pools and runs in two reaches each of the Macquarie and Mersey Rivers, northern Tasmania, Australia were compared from samples collected during the low flow and irrigation season, between December 1991 and April 1992. The area under water of these habitats, riffle substrata, macrophyte beds and coarse woody debris, responded differently to changes in discharge. Within a reach, the same taxonomic groups often dominated the total number of macroinvertebrates for all habitats, but there were differences in the proportions contributed by these taxa to the different habitats. In general, taxa characteristic of slow-flowing or lentic habitats, such as ostracods and amphipods, were dominant in macrophyte beds in pools and runs, whereas taxa such as larval elmid beetles and hydropsychid caddisflies were dominant in riffles. A substantial component of the fauna from each habitat within a reach was unique to that habitat, but there was always a similar number of taxa common to all habitats. Classification and ordination grouped samples from both rivers firstly by habitat and secondly by month and reach. Total density and family richness of invertebrates differed by reach, habitat and month in both rivers, except for richness in the Mersey River where habitat was not significant. Differences in densities and numbers of invertebrate families among habitats were not consistent between reaches for each river. This study has highlighted the differences in macroinvertebrate assemblages of several littoral habitats in two lowland rivers in Tasmania. Differences in taxonomic composition, density and richness among habitats within reaches strongly imply the uniqueness of these habitats in terms of the invertebrate faunas that occupy them. We suggest that if maintenance of biotic diversity is an aim of instream flow management, water allocations that address low flows should place a high priority on the maintenance of a diversity of habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号