首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zein is a hydrophobic protein produced from maize. Biodegradable zein films without additional reagents were prepared using various controlled drying conditions. The zein films were transparent. Mechanical properties (tensile strength and puncture strength), gas permeability, and water vapor permeability (WVP) of the zein films were measured. The tensile strengths of the zein films were between 7 and 30 MPa and the puncture strengths between 37 and 191 MPa. The zein films had higher oxygen permeability than carbon dioxide permeability. The lowest WVP of the zein film was 0.012×10−9 g·m/m2·s·Pa. We found differences in the WVP between the sides of the zein films; i.e., the air side of the zein film had a higher WVP than the basal side of the zein film when the films were exposed to high humidity during testing. This indicates a relationship between the WVP of the zein film and the contact angle of the zein film. The mechanical properties of the zein film depended on the drying conditions during preparation. Zein films with various useful physical mechanical properties were produced.  相似文献   

2.
The water vapor permeability (WVP) of whey protein emulsion films was investigated. The exponential effect of relative humidity on the WVP of whey protein films was reduced through lipid incorporation. Film orientation had a significant effect on WVP due to emulsion separation during film formation. Heat denaturation of whey proteins lowered emulsion film WVP. Increasing fatty acid and fatty alcohol chainlengths significantly reduced WVP, as did increasing lipid concentration. The WVPs of fatty acids, fatty alcohols and beeswax were compared in whey protein-lipid emulsion films. Scanning and transmission electron microscopy revealed the crystalline microstructure of lipid particles in emulsion films.  相似文献   

3.
The heterogeneous crosslinking method was applied to chitosan films with citric acid to observe and understand the effect of a multifunctional acid at a low concentration on film properties. Neat and neutralized chitosan films and films containing 15% (w/w) citric acid (denoted as CA films) were characterized by mechanical, water vapor permeability (WVP), and thermogravimetric analysis tests. The CA films displayed a higher tensile strength by 10%, lower WVP by 30%, and higher thermal stability, compared to neutralized films. The crystalline structure converted back from tendon to Type II after the addition of citric acid, as determined by X-ray diffraction. Neat films displayed a lower water contact angle (72°) compared to neutralized and CA films (78°–79°). The heterogeneous method was also applied to incorporate a plasticizer into a neutralized film to potentially observe the glass transition using dynamic mechanical analysis. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48648.  相似文献   

4.
The objective of this work was to characterize the moisture sorption and water vapor permeation behavior of edible films made from sodium caseinate and chitosan for future applications as protective layers on foods. Glycerol was used as a plasticizer, and the films were obtained by a casting/solvent‐evaporation method. The moisture sorption kinetics and water vapor permeability (WVP) were investigated. The effect of the addition of glycerol on the WVP characteristics of the films was determined at 25°C with a relative humidity (RH) gradient of 0–64.5% (internal to external). Experimental data were fitted with an exponential function with two fitting parameters. WVP increased with increasing glycerol content in both films, chitosan samples being much more permeable than caseinate ones at any glycerol content. WVPs of sodium caseinate, chitosan, and chitosan/caseinate films with 28 wt % glycerol were also determined for two RH gradients, 0 to 64.5% and 100 to 64.5%, higher WVPs being measured at higher RHs. The moisture sorption kinetics of caseinate films prepared with various glycerol contents were determined by the placement of the films in environments conditioned at 20°C and 75% RH. Peleg's equation and Fick's second law were used to predict the moisture sorption behavior over the entire time period. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
The modified dual-mode mobility model for permeation of a gas in glassy polymer membranes was combined with the extended dual-mode sorption model to take account of the plasticization effect of sorbed gas molecules on both sorption and diffusion processes. The combined model was further simplified by the introduction of a concentration of the mobile gas species. However, the observed pressure dependence of mean permeability coefficients of carbon dioxide in methylmethacrylate-n-butyl acrylate copolymer and polymethylmethacrylate films at 30°c and also that of oxygen in a polycarbonate film at 50°C and 60°C showed that a plasticization action of sorbed gas species has an influence on the diffusion process rather than on the sorption process, that is, were simulated by the modified dual-mode mobility model combined with the conventional dual-mode sorption model.  相似文献   

6.
The sorption and transport of water vapor in five dense polyimide membranes were studied by thermogravimetry. The sorption isotherms of water vapor in the polyimides could be successfully interpreted by both the dual‐mode sorption model and the Guggenheim–Anderson–de Boer equation. The water vapor diffusion behavior was found to be nearly Fickian at higher water vapor activities, whereas non‐Fickian diffusion was observed at lower water activities. The phenomena could be well described by the mechanism of combined Fickian and time‐dependent diffusion. The diffusion coefficient and water vapor uptake in the polyimides were strongly dependent on the polymer molecular structure. Except for the polyimide prepared from 3,3′,4,4′‐diphenylsulfone tetracarboxylic dianhydride and 1,3‐bis(4‐aminophenoxy) benzene, the permeability of water vapor in the dense polyimide membranes predicted from the sorption measurement at 30°C corresponded well with the water vapor permeability measured at 85°C. Among the polyimides studied, pyromellitic dianhydride–4,4′‐diaminophenylsulfone (50 mol%)/4,4′‐oxydianiline (50 mol%) showed both high water sorption and diffusion and, therefore, high water vapor permeability, which for vapor permeation membranes is necessary for the separation of water vapor from gas streams. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2306–2317, 2003  相似文献   

7.
The aim of this work was to study the variations in the oxygen diffusion, solubility, and permeability coefficients of polylactide (PLA) films at different temperatures (5, 23, and 40°C) and water activities (0–0.9). The results were compared with the oxygen diffusion, solubility, and permeability coefficients obtained for poly(ethylene terephthalate) (PET) films under the same experimental conditions. The water sorption isotherm for PLA films was also determined. Diffusion coefficients were determined with the half‐sorption time method. Also, a consistency test for continuous‐flow permeability experimental data was run to obtain the diffusion coefficient with the lowest experimental error and to confirm that oxygen underwent Fickian diffusion in the PLA films. The permeability coefficients were obtained from steady‐state permeability experiments. The results indicated that the PLA films absorbed very low amounts of water, and no significant variation of the absorbed water with the temperature was found. The oxygen permeability coefficients obtained for PLA films (2–12 × 10?18 kg m/m2 s Pa) were higher than those obtained for PET films (1–6 × 10?19 kg m/m2 s Pa) at different temperatures and water activities. Moreover, the permeability coefficients for PLA and PET films did not change significantly with changes in the water activity at temperatures lower than 23°C. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1790–1803, 2004  相似文献   

8.
The permeability of carbon dioxide, oxygen, nitrogen, and air through commercial monolayer and multilayer films, based on polyethylene (PE), biaxially oriented polypropylene (BOPP), and polyamide (PA), used for food packaging is reported. The influence of temperature (from 10 to 60°C) on permeability and DSC characteristics changes was also analyzed. Literature data for gas permeability of the mentioned monofilms are quite variable due to differences in additives, thermal history, and crystallinity. In this work, the highest gas permeability is obtained for PE film at the higher temperature (50–60°C). Laminates exhibit different gas permeation behavior from that of monofilms. Generally, gas solubility coefficient increases at higher temperature (with an exception of PA/PE and BOPPcoex.met/PE), being higher for monofilms in comparison with laminates, while diffusion coefficients are lower for monofilms in comparison with laminates. The temperature dependence of the permeability, diffusivity, and solubility of gases shows two different regions in PE, BOPPcoex/PE (10–40°C and 40–60°C), PA/PE, and BOPPcoex.met (10–30°C and 40–60°C) films. Correlation between activation energies for permeation and diffusion as well as heat of sorption and 17 gas properties is performed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1590–1599, 2006  相似文献   

9.
The development of packaging films based on renewable materials is an important and active area of research today. This is the first extensive study focusing on film‐forming properties of an agrobiomass byproduct, namely, oat spelt arabinoxylan. A plasticizer was needed for cohesive film formation, and glycerol and sorbitol were compared. The tensile properties of the films varied with the type and amount of the polyol. With a 10% (w/w) plasticizer content, the films containing glycerol had higher tensile strength than the films containing sorbitol, but with a 40% plasticizer content, the result was the opposite. Sorbitol‐plasticized films retained their tensile properties better than films with glycerol during 5 months of storage. The films were semicrystalline with similar crystallinity indices of 0.20–0.26. The largest crystallites (9.5 nm) were observed in the film with 40% glycerol. The softening of films with 40% (w/w) glycerol started at a significantly lower relative humidity (RH) than that of the corresponding sorbitol‐containing films. The films with sorbitol also had lower water vapor permeability (WVP) than the films with glycerol. The films plasticized with 10% (w/w) sorbitol had a WVP value of 1.1 g mm/(m2·d·kPa) at the RH gradient of 0/54%. The oxygen permeability of films containing 10% (w/w) glycerol or sorbitol was similar: 3 cm3·μm/(m2·d·kPa) at 50–75% RH. A higher plasticizer content resulted in more permeable films. Permeation of sunflower oil through the films was not detected. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Thermomechanical and thermal properties of whey protein, maize prolamin protein (zein), and the laminated whey protein–zein films were studied. The dynamic mechanical (thermal) analysis (DMTA) results showed that the single zein film had higher Tg than single whey protein and zein–whey laminated films. The shift in the Tg values of films from 31.2°C in whey protein film and 88.5°C in the zein film to 82.8°C in the laminated whey protein–zein films may be implied some interaction formation between the two polymers. The small tan δ peaks were observed at ?50°C in zein–glycerol films and at ?22.37°C in the whey protein films and can be related to β‐relaxation phenomena or presence of glycerol rich region in polymer matrix. Zein‐olive oil and zein–whey protein–olive oil films showed tan δ peaks corresponded the Tg values at 113.8, and 92.4°C, respectively. Thus, replacing of glycerol with olive oil in film composition increased Tg. A good correspondence was obtained when DSC results were compared with the tan δ peaks in DMTA measurements. DSC thermograms suggested that plasticizers and biopolymers remained a homogeneous material throughout the cooling and heating cycle. The results showed that Tg of zein–glycerol films predicted by Couchman and Karasz equation is very close to value obtained by DSC experiments. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Edible starch sodium octenyl succinate (SSOS) films, with or without glycerol as plasticizer, were prepared by solution‐casting method. The effect of SSOS concentration, degree of substitution (DS) of octenyl group, as well as glycerol content, on the properties of SSOS films was studied including tensile strength, water vapor permeability (WVP), and oil permeability (OP). The results indicated that the tensile strength of SSOS film was up to 39.4 ± 1.9 MPa when the concentration of SSOS was 0.05 g/mL and DS was 0.05. The increase of glycerol content resulted in a decrease of film tensile strength. WVP of SSOS films was relatively low. Meanwhile, study in OP showed that SSOS films were oilproof. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
The aim of this study was to prepare nanocomposite films composed of whey protein isolate (W) and carrageenan (C) with nanocellulose (N) for food packaging applications. Response surface methodology was applied to investigate the effect of W concentration (v/v, 0–100%), glycerol/sorbitol (G/S) ratio (0–1), and N concentration (w/w, 0–5%) on the physicomechanical properties of film samples. Higher W and N contents and lower G/S ratios showed positive effect on rigidity of film samples, while introducing high concentration of N increased the water vapor permeability values with increasing plasticizer and C concentration. The highest water uptake values were observed in C based films, while a higher C content resulted in lower opacity values. The addition of nanocellulose into whey protein and carrageenan blend films in the presence of a plasticizer mixture improved the suitability of selected biopolymers for food packaging applications when compared to their neat films. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48902.  相似文献   

13.
A series of poly(propylene carbonate) (PPC)/aluminum flake (ALF) composite films with different ALF contents were prepared via a melt‐blending method. Their cross‐section morphologies, thermal properties, tensile strength (TS), and gas barrier properties were investigated as a function of ALF contents. SEM images reveal the good dispersion and orientation of ALF along with melt flow direction within PPC matrix. The oxygen permeability coefficient (OP) and water vapor permeability coefficient (WVP) of the composite films decrease continuously with ALF contents increasing up to 5 wt %, which are 32.4% and 75.2% that of pure PPC, respectively. Furthermore, the TS and thermal properties of PPC/ALF composite film are also improved by the incorporation of ALF particles. The PPC/ALF composite films have potential applications in packaging area due to its environmental‐friendly properties, superior water vapor, and oxygen barrier characteristics. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41663.  相似文献   

14.
Abstract

Water vapor transmission rate was measured on uncoated and ethyfeae-plasma-coated whey (65-93.5% whey protein), on chitosan and starch films and on aluminum-coated chitosan. Surface hydrophobicity was assessed by contact angle measurements, and X-ray photoelectron spectroscopy was used to characterize the coatings. The water vapor transmission rate through the uncoated polymer films was highest for starch and lowest for chitosan. Whey showed intermediate water permeability, with the sample containing 65% whey-protein having the lowest water vapor transmission rate. An improvement in water vapor barrier properties was observed only for the aluminum-coated sample and not for any of the polyethylene-coated samples. It is observed that the penetrating water caused the substrate to swell and the polyethylene coating layer to crack. According to profilometry, the thickness of the polyethylene coating layer was 0.1-1 μm after 15 min exposure time. The coating was hydrophobic and contained almost exclusively carbons typical of linear or crosslinked hydrocarbons. It is suggested that the observed decrease in hydrophobicity with time during the contact angle measurements is due to the reorientation at the surface of carbonyls present in small amounts in the coating.  相似文献   

15.
Polymer materials that regulate the relative humidity in their environment are relevant for applications in the packaging and building sectors. By integration of salts in polymer structures, such materials are able to absorb and desorb high amounts of water vapor. In this study, films of polylactic acid and polypropylene with dispersed calcium chloride (2 and 4 wt %) were produced and biaxially stretched to induce the formation of cavities. The resulting cavities in these films account up to 10 vol % and are able to contain emerging calcium chloride solution formed by water vapor absorption. These films absorb reversibly up to 15 wt % water vapor at 75% relative humidity at 23 °C. This absorption behavior is described by effective diffusion and effective sorption coefficients. Using a simple model, the effective water vapor diffusion coefficient of these films can be estimated from the permeation coefficient of the polymer and the sorption coefficient of the absorber. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45713.  相似文献   

16.
In this study, the use of Pinhão husk as a source of reinforcement material for development of edible films, where the Pinhão seed flour and bovine gelatin were used as matrices for the films. Mechanical properties, water vapor permeability, solubility and opacity, microstructure, and thermal degradation characterized the films produced. The films presented homogeneous and cohesive structures. Pinhão husk content positively affected film properties by increasing tensile strength (TS) and decreasing water vapor permeability (WVP), with Pinhão flour film formulations (5.0% Pinhão flour, 1.2% glycerol, and 0.4% Pinhão husk) and gelatin (5.0% gelatin, 2.0% glycerol, and 0.4% Pinhão husk) those that presented the best results (5.06 MPa for TS and 0.14 g.mm/kPa.h.m2 for WVP) and (3.88 MPa for TS and 0.28 g.mm/kPa.h.m2 for WVP), respectively The thermal degradation study revealed that the films are stable at temperatures below 150°C, losing only free water and volatile compounds of low molecular weight. Pinhão husk can reinforce films, making them suitable as biodegradable and edible packaging materials for eco-friendly food products. This contributes to the circular economy, preserves biodiversity, and reduces plastic waste, offering promising sustainable packaging solutions.  相似文献   

17.
Nowadays, preparing biodegradable films based on hydrocolloids has become thoroughly crucial in food packaging. Also, to enhance some of the aspects of these films, adding oil to the formulation of the films has been considered as a valid method. In this study, a variety of films based on two biopolymers (fenugreek galactomannan and xanthan gum) in the presence or absence of grape seed oil were produced and the various aspects of the obtained films were comprehensively investigated. The obtained data demonstrated that preparing composite films based on two hydrocolloids improved the aspects including film thickness, water vapor permeability (WVP), oxygen permeability (OP), mechanical and thermal properties more than films based on only one hydrocolloid. This improvement was mostly related to the good and acceptable interaction between two biopolymers. The X-ray diffraction (XRD) patterns indicated that all films had an amorphous or non-crystalline structure. Also, the scanning electron microscope images demonstrated that films based on fenugreek galactomannan and composite films based on two hydrocolloids. The value of film thickness and strain at break (SAB) increased by adding oil to the formulation. Contrarily, the moisture content and absorption, WVP, OP, opacity, and ultimate tensile strength (UTS) values of the films decreased by adding oil.  相似文献   

18.
Integral sorption/desorption measurements were carried out for the sulfur dioxide-glassy polyarylate polymer system at 25°C, 40°C, 55°C, and 63°C. The transport of sulfur dioxide in the glassy polyarylate polymer was governed by Fickian diffusion. The effective diffusion coefficient of sulfur dioxide increased with increasing penetrant concentration. The concentration dependence of the effective diffusion coefficient is explained on the basis of the partial-immobilization model developed by Paul and Koros. The mobility of the molecules sorbed in the Langmuir mode is shown to be significantly lower than the mobility of the molecules in Henry's law dissolution mode. The predictions of permeability values as a function of upstream gas pressure are presented. The equilibrium sorption isotherms for this system are well represented by the dualmode sorption model. The eltergetics and the temperature dependence of the dual-mode parameters are also discussed.  相似文献   

19.
Water and water vapor sorption to porous polypropylene–zeolite composites prepared by hot pressing have been studied as a function of zeolite loading. This work presents the first report on the effect of the zeolite as a filler on the water‐sorption properties of PP composites. Water swelling experiments were conducted at 25°C using pure PP and PP–zeolite films samples having different zeolite loadings (6–40 wt %). Because PP is a hydrophobic polymer, it does not sorp any water, but the composites having 10, 20, 30, and 40% zeolites have sorbed 0.63, 1.00, 1.72 and 3.74% water, respectively. The zeolite itself at the same conditions sorbed 24.5% water. As the filler loading in the composites increased, equilibrium uptake values increased also. On the other hand, water vapor sorption and kinetics has been studied using a Cahn 2000 gravimetric sorption system. Within in the range of 0.35–0.95% water vapor was adsorbed by the composites containing 10–40 wt % zeolites. Experimental effective water vapor diffusivities of the composite films was about one order of magnitude higher (10‐fold) than the experimental water diffusion coefficient in composites. The transport of water in composites was slower than that in the liquid water due to the longer diffusion pathway and adsorption on the surface of the composites. Although the liquid water may fill all the voids in the composite, water vapor is adsorbed on the surface of the zeolite only. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3069–3075, 2003  相似文献   

20.
Starch is an appealing natural polymer for the scaled-up production of biodegradable plastics. However, the low water resistance of starch has made its broad applicability largely doubted. In this study, starch was combined with beeswax (BW) through a pilot scale continuous solution casting (CSC) technique to reduce water affinity while keeping the ensuing films totally biodegradable. The phase morphology, surface wettability, and water vapor permeability (WVP) of films were examined over a broad BW–starch mass ratio (0.3–0.7). Emulsified, surfactant-free starch/BW films were successfully obtained at a productivity of 0.55 m2 film h−1. The water contact angle increased nearly by 100% at 30 wt% BW, leading to remarkable reductions in WVP. BW droplets well distributed within the starch matrix played a key role in enhancing the water barrier properties of films. CSC of starch/BW films offers a basis to design new hydrophobic formulations for applications that require biodegradable plastics with high moisture resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号