首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a special type of wireless sensor network, the chain‐type wireless sensor networks can be used to monitor narrow and long regions, such as roads, underground mine tunnels, rivers, and bridges. In this study, a perpendicular bisector division (PB) method was first presented, in which the location may be divided into more location sub‐areas by a perpendicular bisector of each of two location nodes. Compared with the triangulation division method in Approximate Point‐in‐Triangulation Test (APIT), the computable complexity of PB is lower, and the number of division areas is larger. Furthermore, in order to locate targets under rare location nodes, a virtual location node‐perpendicular bisector division (VPB) was presented by a virtual location node based on the geographic shape of the monitored area. Virtual location nodes increase the density of location nodes, which can improve the accuracy of the location in the location algorithm. Second, two range‐free location algorithms were proposed: the location algorithm based on PB (LAPB) and the location algorithm based on VPB (LAVPB). In the end, the location errors performance of APIT, LAPB, and LAVPB for locating miners in an underground mine tunnel was tested. The results show that LAPB and LAVPB have higher location accuracy and are more robust than APIT. LAVPB is more suitable for locating targets in harsh environments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In wireless sensor networks, sensor nodes are usually fixed to their locations after deployment. However, an attacker who compromises a subset of the nodes does not need to abide by the same limitation. If the attacker moves his compromised nodes to multiple locations in the network, such as by employing simple robotic platforms or moving the nodes by hand, he can evade schemes that attempt to use location to find the source of attacks. In performing DDoS and false data injection attacks, he takes advantage of diversifying the attack paths with mobile malicious nodes to prevent network-level defenses. For attacks that disrupt or undermine network protocols like routing and clustering, moving the misbehaving nodes prevents them from being easily identified and blocked. Thus, mobile malicious node attacks are very dangerous and need to be detected as soon as possible to minimize the damage they can cause. In this paper, we are the first to identify the problem of mobile malicious node attacks, and we describe the limitations of various naive measures that might be used to stop them. To overcome these limitations, we propose a scheme for distributed detection of mobile malicious node attacks in static sensor networks. The key idea of this scheme is to apply sequential hypothesis testing to discover nodes that are silent for unusually many time periods—such nodes are likely to be moving—and block them from communicating. By performing all detection and blocking locally, we keep energy consumption overhead to a minimum and keep the cost of false positives low. Through analysis and simulation, we show that our proposed scheme achieves fast, effective, and robust mobile malicious node detection capability with reasonable overhead.  相似文献   

3.
无线传感器网络(Wireless Sensor Networks,简称WSNs)作为一种新的获取信息的方式和处理模式,已成为通信领域的研究重点。而路由协议则是无线传感器网络当前的热点研究之一。目前,针对较为典型的分簇式路由协议LEACH路由协议的研究,是无线传感器网络目前研究的一个热点。介绍了无线传感器网络路由协议常见的攻击类型,并从路由安全的角度建议性的提出了一种对LEACH路由协议针对安全性的改进方案,并应用NS2仿真平台,对改进协议做了仿真并进行了性能分析。  相似文献   

4.
This paper presents a faulty node detection approach for wireless sensor networks that aggregate measurement data on their way toward the sink (base station). The approach is based on the idea of commanding sensor nodes on the aggregation paths to temporarily stop including their readings in the received aggregated readings from their upstream neighbors. The scheme is dependent on the ability of the sink to detect faulty nodes through changes in the received aggregated readings at the sink using a Markov Chain Controller (MCC). The algorithm that is run in the sink uses the MCC to assign a state to each sensor node based on transitions that are triggered by receiving aggregated path readings, and accordingly deduces the nodes that may be faulty. The experimental results show at least 98% detection rate at the cost of reasonable detection delays and generated wireless network traffic. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
非均匀分布下无线传感器网络节点调度机制   总被引:3,自引:0,他引:3  
针对传统依赖精确位置信息的计算复杂和无位置信息部署受限性等弊端,从理论上对节点部署方式进行分析,提出一种非均匀分布下的无线传感器网络节点调度NDNS(non-uniform distribution node scheduling)机制,该机制利用节点与邻居节点的距离信息,对节点覆盖冗余进行判别,适应于任意分布下的网络部署方式。通过实验对机制进行了性能分析和验证,结果表明该方案在保证网络覆盖的前提下,有效地延长了网络生存时间。  相似文献   

6.
In recent years, Wireless Sensor Networks (WSNs) have demonstrated successful applications for both civil and military tasks. However, sensor networks are susceptible to multiple types of attacks because they are randomly deployed in open and unprotected environments. It is necessary to utilize effective mechanisms to protect sensor networks against multiple types of attacks on routing protocols. In this paper, we propose a lightweight intrusion detection framework integrated for clustered sensor networks. Furthermore, we provide algorithms to minimize the triggered intrusion modules in clustered WSNs by using an over‐hearing mechanism to reduce the sending alert packets. Our scheme can prevent most routing attacks on sensor networks. In in‐depth simulation, the proposed scheme shows less energy consumption in intrusion detection than other schemes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Intrusion detection is prominently important for civil and military applications in wireless sensor networks (WSNs). To date, related works address the problem by assuming a straight‐line intrusion path and a Boolean sensing model. However, a straight‐line intrusion path is often not the case in reality, and the Boolean sensing model cannot resemble a real‐world sensor precisely. Results based on these assumptions are therefore not applicable with desirable accuracy in practice. In view of this, we propose a novel sine‐curve mobility model that can simulate different intrusion paths by adjusting its features (amplitude, frequency, and phase) and can be integrated into the random WSN model for intrusion detection analysis. It can also be applied to different sensor models and makes influencing factors tractable. With the model, we examine the effects of different intrusion paths on the intrusion detection probability in a random WSN, considering both Boolean and realistic Elfes sensing models. Further, we investigate the interplays between network settings and intruder's mobility patterns and identify the benefits and side effects of the model theoretically and experimentally. Simulation outcomes are shown to match well with the theoretical results, validating the modeling, analysis, and conclusions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Wireless passive sensor networks play an important role in solving the energy limitation of nodes in the Internet of Things, and node scheduling is a significant method used to improve the energy utilization of nodes. In this work, an unused energy model based on analyzing the energy consumption characteristics of passive nodes is proposed because no unified model of passive sensor nodes is reported in previous studies. A rapid square partition clustering method is proposed according to the analysis of the relation between the sensing and communication radii of nodes, and the secondary grouping and node scheduling in each cluster are implemented to ensure the coverage rate of networks. Experimental results show that the state distribution of nodes in the proposed algorithm is favorable. The performance of the proposed algorithm is significantly affected by the P ratio between the working and charging powers of nodes. When the value of P is less than 100, the network coverage and connectivity rate are maintained at more than 95% and 90%, respectively, and are both higher than the existing algorithm.  相似文献   

9.
Several protocols have been proposed to mitigate the threat against wireless sensor networks due to an attacker finding vulnerable nodes, compromising them, and using these nodes to eavesdrop or undermine the operation of the network. A more dangerous threat that has received less attention, however, is that of replica node attacks, in which the attacker compromises a node, extracts its keying materials, and produces a large number of replicas to be spread throughout the network. Such attack enables the attacker to leverage the compromise of a single node to create widespread effects on the network. To defend against these attacks, we propose distributed detection schemes to identify and revoke replicas. Our schemes are based on the assumption that nodes are deployed in groups, which is realistic for many deployment scenarios. By taking advantage of group deployment knowledge, the proposed schemes perform replica detection in a distributed, efficient, and secure manner. Through analysis and simulation experiments, we show that our schemes achieve effective and robust replica detection capability with substantially lower communication, computational, and storage overheads than prior work in the literature.  相似文献   

10.
针对MSP算法需要借助额外的外部扫描设备,不适合应用于对野外大规模部署的传感器网络进行定位这一缺点,提出了一种HG-MSP算法。该算法通过锚节点发出扫描信息,不需要额外的外部设备进行辅助定位,提高了算法的可用性。仿真实验表明,在去掉辅助设备的情况下,算法的定位精度并无明显下降。  相似文献   

11.
In this paper, we address the energy‐efficient connectivity problem of a wireless sensor network (WSN) that consists of (1) static sensor nodes that have a short communication range and limited energy level, and (2) relay nodes that have a long communication range and unlimited power supply, and that can be added or relocated arbitrarily. For such a WSN, existing studies have been focused on the design of efficient approximation algorithms to minimize the number of relay nodes. By contrast, we propose a unified backbone construction framework that can be performed in a centralized manner with two objectives: (1) to minimize the number of nodes in the backbone and (2) to maximize the lifetime of the network. To solve such a challenging problem, we formulate three subproblems: (1) partial dominating set with energy threshold (PDSET); (2) partial dominating set with largest residual energy (PDSLE); and (3) minimum relay node placement (MRNP). For these three subproblems, we develop polynomial‐time algorithms. We also prove that our algorithm for PDSLE is optimal, and our algorithm for the PDSET and MRNP problems have small approximation ratios. Numerical results show that the proposed framework can significantly improve energy efficiency and reduce backbone size. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
基于RSSI的传感器网络节点安全定位机制   总被引:1,自引:0,他引:1  
叶阿勇  许力  林晖 《通信学报》2012,33(7):135-142
针对RSSI测距存在的脆弱性问题,提出了一种基于完整性编码和不间断占用信道的安全RSSI测距协议,该协议不仅可以抵抗伪造插入、重放/虫洞等常规攻击,而且可以防止信标信号被恶意干扰而削弱,即可抵抗虚增测距的外部攻击。在此基础上,设计了一种基于RSSI的传感器网络节点安全定位机制,该机制采用可校验的多边测量法来过滤虚减测距的外部攻击,实现安全定位,并对测距协议和定位机制的安全性进行了理论分析。  相似文献   

13.
The technological innovations and wide use of Wireless Sensor Network (WSN) applications need to handle diverse data. These huge data possess network security issues as intrusions that cannot be neglected or ignored. An effective strategy to counteract security issues in WSN can be achieved through the Intrusion Detection System (IDS). IDS ensures network integrity, availability, and confidentiality by detecting different attacks. Regardless of efforts by various researchers, the domain is still open to obtain an IDS with improved detection accuracy with minimum false alarms to detect intrusions. Machine learning models are deployed as IDS, but their potential solutions need to be improved in terms of detection accuracy. The neural network performance depends on feature selection, and hence, it is essential to bring an efficient feature selection model for better performance. An optimized deep learning model has been presented to detect different types of attacks in WSN. Instead of the conventional parameter selection procedure for Convolutional Neural Network (CNN) architecture, a nature-inspired whale optimization algorithm is included to optimize the CNN parameters such as kernel size, feature map count, padding, and pooling type. These optimized features greatly improved the intrusion detection accuracy compared to Deep Neural network (DNN), Random Forest (RF), and Decision Tree (DT) models.  相似文献   

14.
针对无线传感器网络中单个节点能量和通信距离均受限,以及传统波束成形机制中由于忽略能耗均衡而造成单个节点过早死亡的特点,提出了一种能量有效的波束成形机制。首先分析了节点个数、发射系数、功率受限、相位等因素对网络能耗的影响,给出了对应的设计原则。然后,基于此原则来选择参与发射的节点,并结合节点的剩余能量和相位来调整各自的发射系数。理论分析和仿真结果表明,该机制有效地增加了数据成功传输的次数,均衡了节点间的能耗,延长了网络寿命。  相似文献   

15.
基于信息覆盖的无线传感器网络访问控制机制   总被引:1,自引:0,他引:1  
通过周期性地信息扩散,设计THC(two-hop cover)算法,使传感器节点能够在用户移动过程中及时得到用户的认证信息.基于THC算法,引入Merkle散列树和单向链等安全机制,采用分布式的访问控制模式,提出了适用于随机移动用户的传感器网络访问控制机制.分析和实验表明,本机制既适用移动用户,也适用静止用户,计算、通信、存储开销低,能够抵制节点捕获、重放、DoS等攻击.  相似文献   

16.
无线传感器网络节点定位技术综述   总被引:2,自引:0,他引:2  
曹小红  李颖  丰皇 《信息技术》2009,(7):233-235,240
无线传感器网络在许多领域有着重要的科研和使用价值,网络中传感器节点自身定位可为无线传感器网络的很多应用提供基础信息,是重要研究方向之一.从无线传感器网络节点定位技术的研究意义与应用价值出发,介绍了节点定位技术的基本原理与方法,并讨论了定位算法的评价标准,最后对节点定位技术的发展方向进行了展望.  相似文献   

17.
Wireless sensor networks (WSNs) have many micro devices that are easy to capture. In node capture attacks, the adversary physically captures sensors and extracts all information including key information from their memories, trying to compromise the system's security protection. However, the robust and random nature of many WSN security designs makes it difficult to compromise the system even with the capture of some sensors. In this paper, we approach WSN security from an adversarial point of view and investigate low‐cost and efficient algorithms to identify sensors in a WSN in the shortest time with the lowest cost. Instead of randomly capturing sensors, an intelligent attacker should choose the next target based on the known topology so far. Because the identification of such has been proven to be NP‐hard (non‐deterministic polynomial‐time hard), we propose to transform the problem into a set covering problem and develop a greedy minimum cost node capture attack algorithm (MCA) to lower cost of attack. Extensive simulations have been implemented to evaluate the performance of MCA and to compare it with several related schemes. It is shown that MCA lowers the cost of compromising WSNs by 16%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
媒体访问控制(MAC)协议对无线传感网的性能具有重要影响。根据无线传感网在网络性能方面的要求,针对现有无线传感网协议在节点能耗和时延方面的不足,提出了一种IM-TDMA方案,根据节点流量的变化,动态地调节帧长,提高信道利用率;同时采用计数器管理及续传优先的调度方式,简化了调度复杂度,降低了节点能耗。仿真结果表明:IM-TDMA方案能有效地节约能耗、降低时延,可运用于实际无线传感网的MAC协议方案中。  相似文献   

19.
无线传感器网络(Wireless Sensor Network,WSN)在许多领域有广泛的应用,无线传感器网络中节点位置对无线传感器网络的应用有重要的影响,没有位置属性的信息是无价值的,定位技术是无线传感器网络的重要研究方向之一.依据测距和非测距的分类方法,介绍节点定位技术的基本原理和方法及当前的发展状况,最后对节点定位技术的发展方向作展望.  相似文献   

20.
Considering severe resources constraints and security threat hierarchical routing protocol algorithm. The proposed routing of wireless sensor networks (WSN), the article proposed a novel protocol algorithm can adopt suitable routing technology for the nodes according to the distance of nodes to the base station, density of nodes distribution, and residual energy of nodes. Comparing the proposed routing protocol algorithm with simple direction diffusion routing technology, cluster-based routing mechanisms, and simple hierarchical routing protocol algorithm through comprehensive analysis and simulation in terms of the energy usage, packet latency, and security in the presence of node protocol algorithm is more efficient for wireless sensor networks. compromise attacks, the results show that the proposed routing  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号