首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The burning of depleting fossil fuels for power generation has detrimental impact on human life and climate. In view of this, renewable solar energy sources are being increasingly exploited to meet the energy needs. Moreover, solar photovoltaic (PV)–diesel hybrid system technology promises lot of opportunities in remote areas which are far from utility grid and are driven by diesel generators. Integration of PV systems with the diesel plants is being disseminated worldwide to reduce diesel fuel consumption and to minimize atmospheric pollution. The Kingdom of Saudi Arabia (K.S.A.) being endowed with high intensity of solar radiation, is a prospective candidate for deployment of PV systems. Also, K.S.A. has large number of remote scattered villages. The aim of this study is to analyze solar radiation data of Rafha, K.S.A., to assess the techno-economic feasibility of hybrid PV–diesel–battery power systems to meet the load requirements of a typical remote village Rawdhat Bin Habbas (RBH) with annual electrical energy demand of 15,943 MWh. Rafha is located near RBH. The monthly average daily global solar radiation ranges from 3.04 to 7.3 kWh/m2. NREL's HOMER software has been used to perform the techno-economic evaluation. The simulation results indicate that for a hybrid system composed of 2.5 MWp capacity PV system together with 4.5 MW diesel system (three 1.5 MW units) and a battery storage of 1 h of autonomy (equivalent to 1 h of average load), the PV penetration is 27%. The cost of generating energy (COE, US$/kWh) from the above hybrid system has been found to be 0.170$/kWh (assuming diesel fuel price of 0.1$/l). The study exhibits that the operational hours of diesel generators decrease with increase in PV capacity. The investigation also examines the effect of PV/battery penetration on COE, operational hours of diesel gensets. Concurrently, emphasis has been placed on: un-met load, excess electricity generation, percentage fuel savings and reduction in carbon emissions (for different scenarios such as: PV–diesel without storage, PV–diesel with storage, as compared to diesel-only situation), COE of different hybrid systems, etc. The decrease in carbon emissions by using the above hybrid system is about 24% as compared to the diesel-only scenario.  相似文献   

2.
Solar photovoltaic (PV) hybrid system technology is a hot topic for R&D since it promises lot of challenges and opportunities for developed and developing countries. The Kingdom of Saudi Arabia (KSA) being endowed with fairly high degree of solar radiation is a potential candidate for deployment of PV systems for power generation. Literature indicates that commercial/residential buildings in KSA consume an estimated 10–45% of the total electric energy generated. In the present study, solar radiation data of Dhahran (East-Coast, KSA) have been analyzed to assess the techno-economic viability of utilizing hybrid PV–diesel–battery power systems to meet the load requirements of a typical commercial building (with annual electrical energy demand of 620,000 kW h). The monthly average daily solar global radiation ranges from 3.61 to 7.96 kW h/m2. NREL's HOMER software has been used to carry out the techno-economic viability. The simulation results indicate that for a hybrid system comprising of 80 kWp PV system together with 175 kW diesel system and a battery storage of 3 h of autonomy (equivalent to 3 h of average load), the PV penetration is 26%. The cost of generating energy (COE, US$/kW h) from the above hybrid system has been found to be 0.149 $/kW h (assuming diesel fuel price of 0.1 $/L). The study exhibits that for a given hybrid configuration, the operational hours of diesel generators decrease with increase in PV capacity. The investigation also examines the effect of PV/battery penetration on COE, operational hours of diesel gensets for a given hybrid system. Emphasis has also been placed on unmet load, excess electricity generation, percentage fuel savings and reduction in carbon emissions (for different scenarios such as PV–diesel without storage, PV–diesel with storage, as compared to diesel-only situation), cost of PV–diesel–battery systems, COE of different hybrid systems, etc.  相似文献   

3.
In the wake of rising cost of oil and fears of its exhaustion coupled with increased pollution, the governments world-wide are deliberating and making huge strides to promote renewable energy sources such as solar–photovoltaic (solar–PV) and wind energy. Integration of diesel systems with hybrid wind–PV systems is pursued widely to reduce dependence on fossil-fuel produced energy and to reduce the release of carbon gases that cause global climate change. Literature indicates that commercial/residential buildings in the Kingdom of Saudi Arabia (KSA) consume an estimated 10–40% of the total electric energy generated. The study reviews research work carried out world-wide on wind farms and solar parks. The work also analyzes wind speed and solar radiation data of East-Coast (Dhahran), KSA, to assess the technical and economic potential of wind farm and solar PV park (hybrid wind–PV–diesel power systems) to meet the load requirements of a typical commercial building (with annual electrical energy demand of 620,000 kWh). The monthly average wind speeds range from 3.3 to 5.6 m/s. The monthly average daily solar global radiation ranges from 3.61 to 7.96 kWh/m2. The hybrid systems simulated consist of different combinations of 100 kW wind machines, PV panels, supplemented by diesel generators. NREL (and HOMER Energy's) HOMER software has been used to perform the techno-economic study. The simulation results indicate that for a hybrid system comprising of 100 kW wind capacity (37 m hub-height) and 40 kW of PV capacity together with 175 kW diesel system, the renewable energy fraction (with 0% annual capacity shortage) is 36% (24% wind + 12% PV). The cost of generating energy (COE, $/kWh) from this hybrid wind–PV–diesel system has been found to be 0.154 $/kWh (assuming diesel fuel price of 0.1$/L). The study exhibits that for a given hybrid configuration, the number of operational hours of diesel generators decreases with increase in wind farm and PV capacity. Attention has also been focused on wind/PV penetration, un-met load, excess electricity generation, percentage fuel savings and reduction in carbon emissions (relative to diesel-only situation) of different hybrid systems, cost break-down of wind–PV–diesel systems, COE of different hybrid systems, etc.  相似文献   

4.
Most of the world’s energy consumption is greatly dependent on fossil fuel, which is exhaustible and is being used extensively due to continuous escalation in the world’s population and development. This valuable resource needs to be conserved and its alternatives need to be explored. In this perspective, dissemination and utilisation of renewables such as solar energy has gained worldwide momentum since the onset of oil crises of 1970s. Moreover, burning of fuels is the principal cause of air pollution, and possibly environmental warming. Saudi Arabia, being blessed with a fairly high level of solar radiation, is a suitable candidate for deployment of solar photo-voltaic (PV) panels for power generation during crisis. Literature indicates that commercial/residential buildings in Saudi Arabia consume an estimated 10–45% of the total electrical energy generated/consumed. In the present study, hourly mean solar radiation data for the period 1986–1993 recorded at the solar radiation and meteorological monitoring station, Dhahran (26° 32′ N, 50° 13′ E), Saudi Arabia, have been analyzed to investigate the potential of utilizing hybrid (PV+diesel) power systems to meet the load requirements of a typical commercial building (with an annual electrical energy demand of 620,000 kWh). The monthly average daily solar global irradiation for Dhahran ranges from 3.61 to 7.96 kWh/m2. The hybrid systems considered in the present analysis consist of different combinations of PV panels/modules (different array sizes) supplemented with a battery storage unit and diesel back-up. The study shows that with a combination of 3700 m2 PV together with 12 h of battery storage, the diesel back-up system has to provide 6% of the load demand. However, in the absence of a battery bank, about 56% of the load needs to be provided by the diesel system.  相似文献   

5.
The share of renewable energy sources in Algeria primary energy supply is relatively low compared with European countries, though the trend of development is positive. One of the main strategic priorities of NEAL (New Energy Algeria), which is Algeria's renewable energy agency (government, Sonelgaz and Sonatrach), is striving to achieve a share of 10–12% renewable energy sources in primary energy supply by 2010.This article presents techno-economic assessment for off-grid hybrid generation systems of a site in south western Algeria. The HOMER model is used to evaluate the energy production, life-cycle costs and greenhouse gas emissions reduction for this study. In the present scenario, for wind speed less than 5.0 m/s the existing diesel power plant is the only feasible solution over the range of fuel prices used in the simulation. The wind diesel hybrid system becomes feasible at a wind speed of 5.48 m/s or more and a fuel price of 0.162$/L or more. If the carbon tax is taken into consideration and subsidy is abolished, then it is expected that the hybrid system will become feasible. The maximum annual capacity shortage did not have any effect on the cost of energy, which may be accounted for by larger sizes of wind machines and diesel generators.  相似文献   

6.
This paper presents the results of an experimental study of a PV/diesel hybrid system without storage. Experimental results show that the sizing of a PV/diesel hybrid system by taking into account the solar radiation and the load/demand profile of a typical area may lead the diesel generator to operate near its optimal point (70–80% of its nominal power). The present paper shows that for a reliability of a PV/diesel hybrid system, the rated power of the diesel generator should be equal to the peak load. By the way, it has been verified through this study that the functioning of a PV/diesel hybrid system is efficient for higher load and higher solar radiation.  相似文献   

7.
A technico-economic analysis based on integrated modeling, simulation, and optimization approach is used in this study to design an off grid hybrid solar PV/Fuel Cell power system. The main objective is to optimize the design and develop dispatch control strategies of the standalone hybrid renewable power system to meet the desired electric load of a residential community located in a desert region. The effects of temperature and dust accumulation on the solar PV panels on the design and performance of the hybrid power system in a desert region is investigated. The goal of the proposed off-grid hybrid renewable energy system is to increase the penetration of renewable energy in the energy mix, reduce the greenhouse gas emissions from fossil fuel combustion, and lower the cost of energy from the power systems. Simulation, modeling, optimization and dispatch control strategies were used in this study to determine the performance and the cost of the proposed hybrid renewable power system. The simulation results show that the distributed power generation using solar PV and Fuel Cell energy systems integrated with an electrolyzer for hydrogen production and using cycle charging dispatch control strategy (the fuel cell will operate to meet the AC primary load and the surplus of electrical power is used to run the electrolyzer) offers the best performance. The hybrid power system was designed to meet the energy demand of 4500 kWh/day of the residential community (150 houses). The total power production from the distributed hybrid energy system was 52% from the solar PV, and 48% from the fuel cell. From the total electricity generated from the photovoltaic hydrogen fuel cell hybrid system, 80.70% is used to meet all the AC load of the residential community with negligible unmet AC primary load (0.08%), 14.08% is the input DC power for the electrolyzer for hydrogen production, 3.30% are the losses in the DC/AC inverter, and 1.84% is the excess power (dumped energy). The proposed off-grid hybrid renewable power system has 40.2% renewable fraction, is economically viable with a levelized cost of energy of 145 $/MWh and is environmentally friendly (zero carbon dioxide emissions during the electricity generation from the solar PV and Fuel Cell hybrid power system).  相似文献   

8.
There is a growing awareness that combustion fuels are a limited resource and burning of these fuels is the principal cause of air pollution, and possibly environmental warming. This recognition is elevating interest and activity toward the development and application of alternative/renewable sources of energy, such as solar energy to displace some of the use of fossil fuels. In this context, Saudi Arabia being enriched with fairly high degree of solar radiation, is a suitable candidate for deployment of solar photo-voltaic (PV) panels for power generation in crisis. Literature shows that residential buildings in Saudi Arabia consume about 47% of the total electric energy generated/consumed. In the present study, hourly mean solar radiation data for the period 1986–1993 recorded at the solar radiation and meteorological monitoring station, Dhahran (26° 32’ N, 50°13’ E), Saudi Arabia, have been analyzed to examine/investigate the potential of utilizing hybrid (PV + diesel) power systems to meet the load requirements of a typical residential building (with annual electrical energy demand of 35 200 kWh). The monthly average daily values of solar global irradiation for Dhahran range from 3.61 kwh/m2 to 7.96 kwh/m2. The hybrid systems considered in the present analysis consist of different combinations of PV panels/modules (different array sizes) supplemented with battery storage unit and diesel back-up. The study shows that with 225 m2 PV together with 12 h of battery storage, the diesel back-up system has to provide 9% of the load demand. However, in absence of battery bank, about 58% of the load needs to be provided by the diesel system.  相似文献   

9.
The power management strategy (PMS) plays an important role in the optimum design and efficient utilization of hybrid energy systems. The power available from hybrid systems and the overall lifetime of system components are highly affected by PMS. This paper presents a novel method for the determination of the optimum PMS of hybrid energy systems including various generators and storage units. The PMS optimization is integrated with the sizing procedure of the hybrid system. The method is tested on a system with several widely used generators in off-grid systems, including wind turbines, PV panels, fuel cells, electrolyzers, hydrogen tanks, batteries, and diesel generators. The aim of the optimization problem is to simultaneously minimize the overall cost of the system, unmet load, and fuel emission considering the uncertainties associated with renewable energy sources (RES). These uncertainties are modeled by using various possible scenarios for wind speed and solar irradiation based on Weibull and Beta probability distribution functions (PDF), respectively. The differential evolution algorithm (DEA) accompanied with fuzzy technique is used to handle the mixed-integer nonlinear multi-objective optimization problem. The optimum solution, including design parameters of system components and the monthly PMS parameters adapting climatic changes during a year, are obtained. Considering operating limitations of system devices, the parameters characterize the priority and share of each storage component for serving the deficit energy or storing surplus energy both resulted from the mismatch of power between load and generation. In order to have efficient power exploitation from RES, the optimum monthly tilt angles of PV panels and the optimum tower height for wind turbines are calculated. Numerical results are compared with the results of optimal sizing assuming pre-defined PMS without using the proposed power management optimization method. The comparative results present the efficacy and capability of the proposed method for hybrid energy systems.  相似文献   

10.
The objective of this paper is to mathematically model a stand-alone renewable power system, referred to as “Photovoltaic–Fuel Cell (PVFC) hybrid system”, which maximizes the use of a renewable energy source. It comprises a photovoltaic generator (PV), a water electrolyzer, a hydrogen tank, and a proton exchange membrane (PEM) fuel cell generator. A multi-domain simulation platform Simplorer is employed to model the PVFC hybrid systems. Electrical power from the PV generator meets the user loads when there is sufficient solar radiation. The excess power from the PV generator is then used for water electrolysis to produce hydrogen. The fuel cell generator works as a backup generator to supplement the load demands when the PV energy is deficient during a period of low solar radiation, which keeps the system's reliability at the same level as for the conventional system. Case studies using the present model have shown that the present hybrid system has successfully tracked the daily power consumption in a typical family. It also verifies the effectiveness of the proposed management approach for operation of a stand-alone hybrid system, which is essential for determining a control strategy to ensure efficient and reliable operation of each part of the hybrid system. The present model scheme can be helpful in the design and performance analysis of a complex hybrid-power system prior to practical realization.  相似文献   

11.
通过对唐山市区太阳能和风能资源状况调查分析,对全年不同方位角和倾角上的太阳能辐射量进行模拟计算,得出南偏东9.8°方向、倾角为39.7°的倾斜面上接收的太阳能辐射量最大,其值为1.62×106Wh/m2。研究中对3kW风力发电机和1kW光伏发电系统的发电量进行了计算,并以1辆纯电动轿车为负载进行了容量配比优化,设计了风力发电系统、风光互补系统及光伏系统三种不同的方案,经过对各方案的经济性、可靠性及稳定性分析,得出最佳的设计方案为风光互补发电系统,该系统风力发电装机容量为3kW,光伏发电装机容量为8.96kW。  相似文献   

12.
Wind–PV–diesel hybrid power generation system technology is a promising energy option since it provides opportunities for developed and developing countries to harness naturally available, inexhaustible and pollution-less resources. The aim of this study is to assess the techno-economic feasibility of utilizing a hybrid wind–PV–diesel power system to meet the load of Al Hallaniyat Island. Hybrid Optimization Model for Electric Renewables software has been employed to carry out the present study. The simulation results indicate that the cost of generating energy (COE) is $0.222 kWh?1 for a hybrid system composed of a 70 kW PV system, 60 kW wind turbine and batteries together with a 324.8 kW diesel system. Moreover, using the same system but without batteries will increase the COE to $0.225 kWh?1, the fuel consumption, the excess energy and the total operating hours for the diesel generators. The PV–wind hybrid option is techno-economically viable for rural electrification.  相似文献   

13.
This paper analyzes a hybrid energy system performance with photovoltaic (PV) and diesel systems as the energy sources. The hybrid energy system is equipped with flywheel to store excess energy from the PV. HOMER software was employed to study the economic and environmental benefits of the system with flywheels energy storage for Makkah, Saudi Arabia. The analysis focused on the impact of utilizing flywheel on power generation, energy cost, and net present cost for certain configurations of hybrid system. Analyses on fuel consumption and carbon emission reductions for the system configurations were also presented in this paper.  相似文献   

14.
Shafiqur Rehman  Luai M. Al-Hadhrami   《Energy》2010,35(12):4986-4995
This study presents a PV–diesel hybrid power system with battery backup for a village being fed with diesel generated electricity to displace part of the diesel by solar. The hourly solar radiation data measured at the site along with PV modules mounted on fixed foundations, four generators of different rated powers, diesel prices of 0.2–1.2US$/l, different sizes of batteries and converters were used to find an optimal power system for the village. It was found that a PV array of 2000 kW and four generators of 1250, 750, 2250 and 250 kW; operating at a load factor of 70% required to run for 3317 h/yr, 4242 h/yr, 2820 h/yr and 3150 h/yr, respectively; to produce a mix of 17,640 MWh of electricity annually and 48.33 MWh per day. The cost of energy (COE) of diesel only and PV/diesel/battery power system with 21% solar penetration was found to be 0.190$/kWh and 0.219$/kWh respectively for a diesel price of 0.2$/l. The sensitivity analysis showed that at a diesel price of 0.6$/l the COE from hybrid system become almost the same as that of the diesel only system and above it, the hybrid system become more economical than the diesel only system.  相似文献   

15.
Afghanistan has a need for increased access to energy to enable development. In this paper we analyze the potential for large-scale grid-connected solar photovoltaic (PV) and wind power plants in two of Afghanistan's most populous provinces (Balkh and Herat) to meet a large fraction of growing electricity demand. The results presented here represent the first quantitative analysis of potential capacity factors and energy yields of power plants in the country using measured wind speed and typical solar radiation data. Variability of resources is also investigated by comparing temporal profiles with those of electricity demand, using residual load duration curves to determine penetration and curtailment levels for various demand scenarios. We show that solar PV and wind power plants in two provinces could achieve penetration levels of 65%–70% without significant curtailment, which in turn would mean less reliance on unpredictable and unstable power purchase agreements with neighboring countries, longer life of limited domestic fossil fuel resources, and lower imports of diesel fuel, thus avoiding rising costs and detrimental environmental impacts. Our results point to an alternative development pathway from that of previous recommendations for conventional thermal power plants, controversial hydroelectric projects, and a significant dependence on imported power.  相似文献   

16.
M.J. Khan  M.T. Iqbal   《Renewable Energy》2005,30(6):835-854
A potential solution for stand-alone power generation is to use a hybrid energy system in parallel with some hydrogen energy storage. In this paper, a pre-feasibility study of using hybrid energy systems with hydrogen as an energy carrier for applications in Newfoundland, Canada is explained. Various renewable and non-renewable energy sources, energy storage methods and their applicability in terms of cost and performance are discussed. HOMER is used as a sizing and optimization tool. Sensitivity analysis with wind speed data, solar radiation level, diesel price and fuel cell cost was done. A remote house having an energy consumption of 25 kW h/d with a 4.73 kW peak power demand was considered as the stand-alone load. It was found that, a wind–diesel–battery hybrid system is the most suitable solution at present. However, with a reduction of fuel cell cost to 15% of its current value, a wind–fuel cell system would become a superior choice. Validity of such projection and economics against conventional power sources were identified. Sizing, performance and various cost indices were also analyzed in this paper.  相似文献   

17.
Renewable energy sources have been taken the place of the traditional energy sources and especially rapidly developments of photovoltaic (PV) technology and fuel cell (FC) technology have been put forward these renewable energy sources (RES) in all other RES. PV systems have been started to be used widely in domestic applications connected to electrical grid and grid connected PV power generating systems have become widespread all around the world. On the other hand, fuel cell power generating systems have been used to support the PV generating so hybrid generation systems consist of PV and fuel cell technology are investigated for power generating. In this study, a grid connected fuel cell and PV hybrid power generating system was developed with Matlab Simulink. 160 Wp solar module was developed based on solar module temperature and solar irradiation by using real data sheet of a commercial PV module and then by using these modules 800 Wp PV generator was obtained. Output current and voltage of PV system was used for input of DC/DC boost converter and its output was used for the input of the inverter. PV system was connected to the grid and designed 5 kW solid oxide fuel cell (SOFC) system was used for supporting the DC bus of the hybrid power generating system. All results obtained from the simulated hybrid power system were explained in the paper. Proposed model was designed as modular so designing and simulating grid connected SOFC and PV systems can be developed easily thanks to flexible design.  相似文献   

18.
A hybrid (photovoltaic, PV/wind/fuel cell, FC) system comprising different combinations of PV arrays, wind turbine, hydrogen tank, electrolyser, and FC has been investigated for stand-alone applications. Load demand was the electrical requirements of atypical residential apartment having a total area of 500 m2 with a peak electrical load of 35 kW and a yearly load of 24.4 MWh in Kerman, Iran. The assessment criterion for the analysis was levellised cost of energy of each system configuration. National Renewable Energy Laboratory's Hybrid Optimization Model for Electric Renewable software was utilised as the assessment tool of the present study. The effect of electrical load profile on the optimisation results has also been investigated considering a demand load profile with a low peak of 12 kW. Also, a comparison was made between the hybrid (PV/wind/diesel/bat) systems and the hybrid (PV/wind/FC) system of the current study at different fuel price scenarios.  相似文献   

19.
There is a constant growth in energy consumption and consequently energy generation around the world. During the recent decades, renewable energy sources took heed of scientists and policy makers as a remedy for substituting traditional sources. Wind and photovoltaic (PV) are the least reliable sources because of their dependence on wind speed and irradiance and therefore their intermittent nature. Energy storage systems are usually coupled with these sources to increase the reliability of the hybrid system. Environmental effects are one of the biggest concerns associated with the renewable energy sources. This study summarizes the last and most important environmental and economic analysis of a grid‐connected hybrid network consisting of wind turbine, PV panels, and energy storage systems. Focusing on environmental aspects, this paper reviews land efficiency, shaded analysis of wind turbines and PV panels, greenhouse gas emission, wastes of wind turbine and PV panels' components, fossil fuel consumption, wildlife, sensitive ecosystems, health benefits, and so on. A cost analysis of the energy generated by a hybrid system has been discussed. Furthermore, this study reviews the latest technologies for materials that have been used for solar PV manufacturing. This paper can help to make a right decision considering all aspects of installing a hybrid system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
In life cycle assessment (LCA) of solar PV systems, energy pay back time (EPBT) is the commonly used indicator to justify its primary energy use. However, EPBT is a function of competing energy sources with which electricity from solar PV is compared, and amount of electricity generated from the solar PV system which varies with local irradiation and ambient conditions. Therefore, it is more appropriate to use site-specific EPBT for major decision-making in power generation planning. LCA and life cycle cost analysis are performed for a distributed 2.7 kWp grid-connected mono-crystalline solar PV system operating in Singapore. This paper presents various EPBT analyses of the solar PV system with reference to a fuel oil-fired steam turbine and their greenhouse gas (GHG) emissions and costs are also compared. The study reveals that GHG emission from electricity generation from the solar PV system is less than one-fourth that from an oil-fired steam turbine plant and one-half that from a gas-fired combined cycle plant. However, the cost of electricity is about five to seven times higher than that from the oil or gas fired power plant. The environmental uncertainties of the solar PV system are also critically reviewed and presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号