首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 101 毫秒
1.
以2 MW风力机为研究对象,基于实际风力机状态(SCADA)系统大数据,选取叶片正常状态和覆冰状态下的风速、功率、桨距角和偏航角数据,采用核密度-均值数据处理方法,得到叶片覆冰状态监测基准值及其定量表达式。同时,根据叶片不同覆冰时期桨距角和功率值随风速的变化情况,提出叶片覆冰状态分级诊断标准。应用结果表明,根据桨距角随风速的变化情况可判断在叶片覆冰过程中机组最大功率追踪情况以及气动性能损失情况,根据风速-功率值分布情况可较准确地判别叶片的覆冰状态。  相似文献   

2.
The relationship between chord length and rime icing on wind turbines   总被引:1,自引:0,他引:1  
Numerical simulations of ice accumulation on four different wind turbine blade profiles, from 450 kW, 600 kW, 1 MW and 2 MW, fixed speed, stall controlled, wind turbines, were performed to determine how wind turbine size affects atmospheric icing. The simulations indicate that dry rime icing is less severe for larger wind turbines both in terms of local ice mass and in terms of relative ice thickness. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Phases of icing on wind turbine blades characterized by ice accumulation   总被引:1,自引:0,他引:1  
Icing experiments on wind turbine blade profiles have been performed at the University of Manitoba Icing Tunnel Facility to facilitate a greater understanding of the mechanisms involved in the icing process for wind turbines exposed to cold climates. Blade icing results in the degradation of power performance and is a critical issue for the optimization of power performance and safe operation of wind turbines. Accumulation rate, the amount of ice that accumulates at the leading edge of the blade profile as a function of time, provides a characteristic measurement that can be used to classify the phases of icing in an icing event and further identify the severity of potential problems arising as a result of ice accumulation on wind turbine blades. To control this characteristic, the mitigation strategies that were employed involved coatings, heat treatments and the combination thereof, in both glaze and rime icing regimes. By understanding the icing process and its characteristic behavior to non-mitigated and mitigated scenarios, the phases of icing of both circumstances may be defined. This paper documents the data recorded from the experimental icing event and provides results of the comparative behavior of the icing mitigation strategies and extends this understanding to define the phases of icing on wind turbine blades.  相似文献   

4.
A numerical study of power performance losses due to ice accretion on a large horizontal axis wind turbine blade has been carried out using computational fluid dynamics (CFD) and blade element momentum (BEM) calculations for rime ice conditions. The computed aerodynamic coefficients for the normal and iced blades from the CFD calculations were used together with the BEM method to calculate the torque, power and curves of the wind turbine for both normal and icing conditions. The results are compared with the published data. It is shown that icing results in a reduced power production from the turbine and that changing the turbine controller could improve the power production with iced blades. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Effect of icing roughness on wind turbine power production   总被引:1,自引:0,他引:1       下载免费PDF全文
The objective of this work is a quantitative analysis of power loss of a representative 1.5‐MW wind turbine subject to various icing conditions. Aerodynamic performance data are measured using a combination of ice accretion experiments and wind tunnel tests. Atmospheric icing conditions varying in static temperature, droplet diameter and liquid water content are generated in an icing facility to simulate a 45‐min icing event on a DU 93‐W‐210 airfoil at flow conditions pertinent to 80% blade span on a 1.5‐MW wind turbine. Iced airfoil shapes are molded for preservation and casted for subsequent wind tunnel testing. In general, ice shapes are similar in 2D profile, but vary in 3D surface roughness elements and in the ice impingement length. Both roughness heights and roughness impingement zones are measured. A 16% loss of airfoil lift at operational angle of attack is observed for freezing fog conditions. Airfoil drag increases by 190% at temperatures near 0° C, 145% near 10° C and 80% near 20° C. For a freezing drizzle icing condition, lift loss and drag rise are more severe at 25% and 220%, respectively. An analysis of the wind turbine aerodynamic loads in Region II leads to power losses ranging from 16% to 22% for freezing fog conditions and 26% for a freezing drizzle condition. Differences in power loss between icing conditions are correlated to variance in temperature, ice surface roughness and ice impingement length. Some potential control strategies are discussed for wind turbine operators attempting to minimize revenue loss in cold‐climate regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The wind energy market is in full growth in Quebec but technical difficulties due to cold climate conditions have occurred for most of the existing projects. Thus, icing simulations were carried out on a 0.2 m NACA 63 415 blade profile in the refrigerated wind tunnel of the Anti‐icing Materials International Laboratory (AMIL). The shapes and masses of the ice deposits were measured, as well as the lift and drag forces of the iced profiles. Scaling was carried out based on the 1.8 MW–Vestas V80 wind turbine technical data, for three different radial positions and two in‐fog icing conditions measured at the Murdochville wind farm in the Gaspé Peninsula. For both icing events, the mass of ice accumulated on the blade profile increased with an increase in the radial position. In wet regime testing (first icing event), glaze formed mostly near the leading edge and on the pressure side. It also accumulated by run‐off on the trailing edge of the outer half of the blade. In dry‐regime testing (second icing event), rime mostly accreted on the leading edge and formed horns. For both icing events, when glaze or rime accreted on the blade profile, lift decreased and drag increased. A load calculation using the blade element theory shows that drag force on the entire blade becomes too large compared to lift, leading to a negative torque and the stop of the wind turbine. Torque reduction is more significant on the outer third of the blade. Setting up a de‐icing system only on the outer part of the blade would enable significant decrease of heating energy costs. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Wind turbine aerodynamic response under atmospheric icing conditions   总被引:1,自引:0,他引:1  
This article deals with the atmospheric ice accumulation on wind turbine blades and its effect on the aerodynamic performance and structural response. The role of eight atmospheric and system parameters on the ice accretion profiles was estimated using the 2D ice accumulation software lewice Twenty‐four hours of icing, with time varying wind speed and atmospheric icing conditions, was simulated on a rotor. Computational fluid dynamics code, FLUENT, was used to estimate the aerodynamic coefficients of the blade after icing. The results were also validated against wind tunnel measurements performed at LM Wind Power using a NACA64618 airfoil. The effects of changes in geometry and surface roughness are considered in the simulation. A blade element momentum code WT‐Perf is then used to quantify the degradation in performance curves. The dynamic responses of the wind turbine under normal and iced conditions were simulated with the wind turbine aeroelastic code HAWC2. The results show different behaviors below and above rated wind speeds. In below rated wind speed, for a 5 MW virtual NREL wind turbine, power loss up to 35% is observed, and the rated power is shifted from wind speed of 11 to 19 m s?1. However, the thrust of the iced rotor in below rated wind speed is smaller than the clean rotor up to 14%, but after rated wind speed, it is up to 40% bigger than the clean rotor. Finally, it is briefly indicated how the results of this paper can be used for condition monitoring and ice detection. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
详细分析叶片结冰对风电机组运行性能和运行参数的影响,采用功率、叶轮转速和环境温度作为监测叶片结冰的变量.采用高斯过程回归分别建立功率模型和叶轮转速模型实现2个参数的实时监测.引入序贯概率比检验方法分析功率和叶轮转速模型的预测残差以发现2个参数在叶片结冰时的异常变化.当风电机组功率异常、叶轮转速异常且环境温度在0℃附近这...  相似文献   

9.
We demonstrate a concept potentially suitable for detecting in-cloud ice and indication of ice accretion rate within a laboratory setting. The concept measures the change in capacitance and resistance due to ice accretion between two charged cylindrical probes. An ice sensor using this concept could be located on meteorological towers or nacelle of wind turbines for icing measurements. During the controlled icing experiments, ice builds up on the cylindrical probes: capacitance increases and resistance decreases. Capacitance correlates with the mass, thickness and the location of ice deposits; the type of icing—glaze versus rime—correlates well with resistance measurements. A 2-D electric field simulation around cylindrical probes demonstrates the sensitivity of this ice sensor as a function of the distance between the probes and the location of ice deposition around the probes. Capacitance measurements using different acrylic annuli machined to high tolerances and placed over each probe to simulate ice validates the electric field simulation. Experimental tests of the cylindrical probes in an icing wind tunnel facility under controlled rime and glaze ice conditions validate the concept.  相似文献   

10.
Icing seriously endangers the operational safety of wind turbines, and there has been a lack of research on the quantitative detection and early warning of the icing distribution on a blade. In order to address the present state and specific engineering problems of wind turbines, a method based on external sensor installation is proposed for quantitatively monitoring the icing distribution on a blade through numerical simulation and sensor detection technology. Field tests were performed on 1.5 and 2.0 MW wind turbines in icy weather. The detected distribution and thickness of the blade icing showed good agreement with the field results, which verifies the effectiveness of the detection method. The error between the detected and real ice thicknesses was approximately 20%, which breaks through the limitations of previous qualitative monitoring, and the error for specific ice formations on the blade was within the acceptable range. This new monitoring method can provide a reference for wind turbine icing detection and technical support for the efficient design and effective operation of icing protection facilities.  相似文献   

11.
The simulation of wind turbines with bend–twist adaptive blades is a coupled aero-structure (CAS) procedure. The blade twist due to elastic coupling is a required parameter for wind turbine performance evaluation and can be predicted through a finite element (FE) structural analyser. FEA-based codes are far too slow to be useful in the aerodynamic design/optimisation of a blade. This paper presents a combined analytical/FEA-based method for CAS simulation of wind turbines utilising bend–twist adaptive blades. This method of simulation employs the induced twist distribution and the flap bending at the hub of the blade predicted through a FEA-based CAS simulation at a reference wind turbine run condition to determine the wind turbine performance at other wind turbine run conditions. This reduces the computational time significantly and makes the aerodynamic design/optimisation of bend–twist adaptive blades practical. Comparison of the results of a case study which applies both combined analytical/FEA-based and FEA-based CAS simulation shows that when using the combined method the required computational time for generating a power curve reduces to less than 5%, while the relative difference between the predicted powers by two methods is only about 1%.  相似文献   

12.
Wind park power production in cold climate regions is significantly impacted by ice growth on turbine blades. This can lead to significant errors in power forecasts and in the estimation of expected power production during turbine siting. A modeling system is presented that uses a statistical modeling approach to estimate the power loss due to icing, using inputs from both a physical icing and a numerical weather prediction model. The physical icing model is that of Davis et al., 1 with updates to the simulation of ice ablation. A new approach for identifying periods of turbine blade icing from power observations was developed and used to calculate the observed power loss caused by icing. The observed icing power loss for 2years at six wind parks was used to validate the modeling system performance. Production estimates using the final production loss model reduce the root mean squared error when compared with the empirical wind park power curve (without icing influence) at five of the six wind parks while reducing the mean bias at all six wind parks. In addition to performing well when fit to each wind park, the production loss model was shown to improve the estimate of power when fit using all six wind parks, suggesting it may also be useful for wind parks where production data are not available. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
基于叶素动量理论分析了小型风力机的气动性能分析模型,并提出了叶片的气动优化设计方法.结合叶片制造和应用中的实际要求,设计了10 kW小型变桨距风力机叶片的气动外形.计算结果表明,设计叶片具有良好的气动性能,验证了该设计方法有效实用.  相似文献   

14.
15.
一种水平轴风轮叶片的气动设计方法   总被引:10,自引:0,他引:10  
发展了两种先进的水平轴风轮叶片气动计算和设计方法-PROPGA和PROPID,PROPGA是基于最优化方法的遗传算法,用于最初的叶片选择和几何设计;PROPID是一种基于反问题的叶片气动设计方法,用于最后的叶片造型和性能预估。给出了两个实例,一个是以基础科学研究为目的实验探索用全新风轮,另一个则是用于商业生产的小型风轮。在实际风轮设计中的成功使用证明,PROPID和PROPGA是一种强有力的设计工具,两者的结合使用可以得到最佳的风力涡轮气动性能。  相似文献   

16.
Wind turbine performance can be significantly reduced when the surface integrity of the turbine blades is compromised. Many frontier high-energy regions that are sought for wind farm development including Nordic, warm-humid, and desert-like environments often provide conditions detrimental to the surface of the turbine blade. In Nordic climates ice can form on the blades and the turbine structure itself through a variety of mechanisms. Initial ice adhesion may slightly modify the original aerodynamic profile of the blade; continued ice accretion can drastically affect the structural loading of the entire rotor leading to potentially dangerous situations. In warmer climates, a humid wind is desirable for its increased density; however, it can come at a price when the region supports large populations of insects. Insect collisions with the blades can foul blade surfaces leading to a marked increase in skin drag, reducing power production by as much as 50%. Finally, in more arid regions where there is no threat from ice or insects, high winds can carry soil particles eroded from the ground (abrasive particles). Particulate-laden winds effectively sand-blast the blade surfaces, and disrupt the original skin profile of the blade, again reducing its aerodynamic efficiency. While these problems are challenging, some mitigative measures presently exist and are discussed in the paper. Though, many of the current solutions to ice or insect fouling actually siphon power from the turbine itself to operate, or require that the turbine be stopped, in either case, profitability is diminished. Our survey of this topic in the course of our research suggests that a desirable solution may be a single surface engineered coating that reduces the incidence of ice adhesion, insect fouling, and protects the blade surface from erosive deterioration. Research directions that may lead to such a development are discussed herein.  相似文献   

17.
Renewable energy is one of the main pillars of sustainable development, especially in developing economies. Increasing energy demand and the limitation of fossil fuel reserves make the use of renewable energy essential for sustainable development. Wind energy is considered to be one of the most important resources of renewable energy. In North African countries, such as Egypt, wind energy has an enormous potential; however, it faces quite a number of technical challenges related to the performance of wind turbines in the Saharan environment. Seasonal sand storms affect the performance of wind turbines in many ways, one of which is increasing the wind turbine aerodynamic resistance through the increase of blade surface roughness. The power loss because of blade surface deterioration is significant in wind turbines. The surface roughness of wind turbine blades deteriorates because of several environmental conditions such as ice or sand. This paper is the first review on the topic of surface roughness effects on the performance of horizontal‐axis wind turbines. The review covers the numerical simulation and experimental studies as well as discussing the present research trends to develop a roadmap for better understanding and improvement of wind turbine performance in deleterious environments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Experimental adhesion force measurements were conducted on accumulated ice on the leading edge of a scaled wind turbine blade in both glaze and rime icing regimes. An apparatus was first designed for specifically measuring the adhesion force of ice on a curved surface at climatic temperature where a vertical force was applied to the mounted structure in the test apparatus. Adhesion force measurements were measured and adhesion pressure calculated for plain and ice-mitigated test specimens. Results are presented for the increase in force of ice adhesion over a curved surface area in proportion to degree centigrade decrease in temperature.  相似文献   

19.
The aerodynamic characteristics of wind turbines are closely related to the geometry of their blade profiles. The innovation and the technological development of wind turbine blade profiles can be centred on two tendencies. The first is to improve the shape of the existing airfoils and the second is to design new shapes of airfoils in order to get some more ambitious aerodynamic characteristics and enhanced performance.The aim of this paper is to develop an accurate airfoil analysis lower order code, based on the singularities method, for wind turbine applications. The 2D incompressible potential flow model has been used. In the implementation of the singularities method, source–vortex distributions over the airfoil contour are used to compute the flow characteristics. The accuracy and the validity of the results have been tested using experimental data obtained from Wind Turbine Airfoil Catalogue “Risø National Laboratory, Roskilde, Denmark, August 2001” and have shown considerable agreement.  相似文献   

20.
Icing on the blades of a wind turbine can lead to significant production losses during the winter months for wind parks in cold climate regions. However, there is no standard way of identifying ice‐induced power loss. This paper describes three methods for creating power threshold curves that can be used to separate iced production periods from non‐iced production periods. The first approach relies on a percentage deviation from the manufacturer's power curve. The other two approaches fit threshold curves based on the observed variance of non‐iced production data. These approaches are applied to turbines in four wind parks and compared with each other and to observations of icing on the nacelle of one of the turbines in each park. It is found that setting an ice threshold curve using 0.1 quantile of the observed power data during normal operation with a 2‐h minimum duration is the best approach for icing identification. The quantile should be fit based on at least 1year of data, and a smoothing function should be applied to the quantile results to remove any outliers caused by limited numbers of data points. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号