首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
湿土壤含湿特性对传热影响研究   总被引:7,自引:0,他引:7  
针对于地源热泵地能换热系统在具有热源条件下土壤热湿迁移现象,进行了初步分析和实验,并对模拟计算应用可行性进行了认证。土壤含水静态传热实验,目的在于探讨土壤含湿程度对传热能力的影响,以及地下含水程度对换热区域换热性能的影响。研究土壤不同含水率情况下的传热性能,从而推断含水率在工程中的影响程度。为进一步研究地源热泵应用中关于土壤含水的传热问题奠定基础。  相似文献   

2.
高青  于鸣  白金玉  李明 《太阳能学报》2003,24(3):307-310
以太阳辐射积聚大量能量和冷热良性循环蓄集巨大能量的地下是一个庞大的可再生能源库,也是一项可充分利用的自然能量资源。该文介绍了在地源热泵系统中开展的地下100m和200m竖直井闭式循环传热的研究工作,提出利用地下螺旋芯管束新方法,加强旋流流动,提高地下换热能力。试验表明,在放热和吸热过程中,传热均得到显著提高。所提出的可控制间歇过程,将充分发挥换热井的换热能力,实现最少的井数布置,保证良好的地源热泵机组运行工况。  相似文献   

3.
The main solution for the reduction of energy consumption in the field of HVAC is the development of new and renewable energy technologies. Among the various renewable energy systems, ground source heat pump (GSHP) systems have been spotlighted as efficient building energy systems because of their great potentials for energy reduction in building air conditioning and reducing CO2 emissions. However, higher initial cost works as a barrier to the promotion of their use. Therefore, it is critical to reduce the initial costs by optimizing the design of the system. In this paper, parameters that affect the performance of the GSHP system and the size of ground loop heat exchanger (GLHX) have been investigated. Ratio of GLHX length to unit capacity (L/Q) decreased according to increasing value of thermal conductivity, but L/Q increased according to increasing value of borehole heat transfer resistance. In cooling mode, L/Q decreased according to increasing EWT of underground circulating water and borehole distance but increased in heating mode. The value of L/Q tended to increase according to increasing underground initial temperature in cooling mode, but decreased in heating mode. L/Q decreased according to increasing U-tube separation distance and decreasing underground circulating water flow rate, because the thermal interference effect of underground circulating water and heat absorption and emission rate from the ground decreased. The reduction of the size of GLHX is very important in the aspect of saving total installation cost of a GSHP system. Therefore, the size of GLHX and the performance of GSHP system should be considered together for optimum design of the GSHP system.  相似文献   

4.
岩土热物理性质是影响地源热泵系统设计和运营的关键因素,对位于武汉市洪山区的2口不同深度的同轴地埋管换热孔分别进行48 h的热响应试验,并对同轴地埋管换热器内外管之间环形空间中的平均流体温度进行测试.根据同轴地埋管换热器的几何特性,以简便实用的方式测量同轴地埋管换热器环状空间传热流体的平均温度,结合同轴地埋管换热器钻孔热...  相似文献   

5.
我国地源热泵相关技术专利综合分析   总被引:1,自引:1,他引:0  
地源热泵是一种利用浅层土壤或含水层实现供热和空调制冷的高效节能设备。随着我国政府和社会对节能环保越发重视,地源热泵技术的优势将更加突出。最近几年我国地源热泵发展较迅速,在设计、制造、运行、管理等方面都取得了一些研究成果。对国内最近地源热泵的相关专利进行了检索,并进行了定性与定量分析,为该领域的研究者和企业提供专利信息参考,并归纳总结了一些研究热点,以期为我国地源热泵行业的研究开发与市场发展提供决策参考和技术依据。  相似文献   

6.
An experimental study is performed to determine the performance of a ground source heat pump (GSHP) system in the heating mode in the city of Erzurum, Turkey. The GSHP system using R‐134a as refrigerant has a single U‐tube ground heat exchanger (GHE) made of polyethylene pipe with a 16 mm inside diameter. The GHE was placed in a vertical borehole with 55 m depth and 203.2 mm diameter. The average coefficients of performance (COP) of the GSHP system and heat pump in heating mode are calculated as 2.09 and 2.57, respectively. The heat extraction rate per meter of the borehole is determined as 33.60 W m?1. Considering the current gas and electric prices in Erzurum city, the equivalent COP of the GSHP system should be 2.92 for the same energy cost comparing with natural gas. The virgin ground in Erzurum basin has high permeability and low thermal conductivity. In order to improve the thermal efficiency of GHE and thus improve COP of a GSHP in the basin, the borehole should be backfilled with sand as low‐cost backfill material and a 1 to 2 m thick surface plug of clay should be inserted. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
地源热泵供暖空调的经济性   总被引:9,自引:1,他引:8  
李新国  赵军  朱强 《太阳能学报》2001,22(4):418-421
地源热泵是利用地表浅层土壤能量(地下水、土壤或地表水)作为冬季热泵热源供暖和夏季冷源进行空调的系统,地源温度全年相对稳定的特性使得地源热泵比传统空调系统运行效率要高,地源热泵是否具有经济竞争性仍是一个非常关键的问题,该文对地源热泵与传统的供暖空调系统进行经济性比较。首先将地源热泵与传统供暖方式,如燃煤、燃油和天然气锅炉进行供暖经济性的比较,再将地源热泵与常规电制冷空调方式进行空调经济性的比较,然后将地源热泵与锅炉加空调两种方式共四种方式共四种方案进行综合经济性的比较分析。  相似文献   

8.
太阳能辅助地源热泵联合供暖(制冷)运行模式分析   总被引:1,自引:0,他引:1  
太阳能和地源热泵联合供暖系统以其良好的节能和环保特性,近年来得到国内外众多学者和研究机构的广泛关注。总结了国内外地源热泵和太阳能集热器联合供暖(制冷)技术的发展现状和最新研究动态,介绍了太阳能辅助地源热泵联合供暖(制冷)的技术和特点,指出太阳能辅助地源热泵供暖(制冷)技术具有较好的发展前景。  相似文献   

9.
The authors introduce calculation algorithm of the temperatures of the ground and heat carrier fluid in multiple ground heat exchangers for pipe arrangement of ground source heat pump (GSHP) systems. First, the outline is explained. Next, in order to investigate possibility for the operation of the GSHP system with steel foundation piles and validate reproducibility of the value calculated by the design tool including the calculation algorithm, field tests of heating and heat extraction were conducted with a residential GSHP system using 25 steel foundation piles of 8 m long as ground heat exchangers. From a result of comparison between temperatures of the measurement in the test and calculation by using the design tool, it was confirmed that the tool could predict the temperatures with acceptable precision and speed for utilizing as a design tool. In addition, performance of GSHP systems with steel foundation piles in long term is predicted with the design tool. In moderate climate region, since the GSHP systems using multiple ground heat exchangers with short length can operate with high efficiency as well as the GSHP system using a single ground heat exchanger with long length, the GSHP systems with steel foundation piles have possibility to become popular.  相似文献   

10.
地下群井换热强化与运行模式影响规律   总被引:5,自引:0,他引:5  
高青  李明  闫燕 《太阳能学报》2006,27(1):83-89
利用传热模拟分析,研究了地源热泵(GSHP)地能利用中地下群井多源换热及其运行模式影响规律。探讨间歇运行模式和连续运行模式对群井区域内温变特性的影响规律及各井热源的交互影响。分别对间隔周期、传热能力和温度场变化等进行了综合分析,指出运行模式调控有利于强化地能利用以及多井源间的协调排列。为地能在地源热泵供热供冷中大规模利用奠定理论基础。  相似文献   

11.
基于圆柱热源模型的现场测量地下岩土热物性方法   总被引:3,自引:0,他引:3  
在埋地换热器圆柱热源模型的基础上采用参数估计法建立了一套可用于现场确定土壤热物性的方法。结合地源热泵系统单井热响应测试实验,计算了地下岩土热物性参数,模拟了管内流体平均温度随时间变化规律,与实验值比较,发现该方法较线热源法更加接近实际。  相似文献   

12.
竖直埋管地热换热器钻孔内的传热分析   总被引:6,自引:0,他引:6  
准三维模型为竖直埋管地热换热器的结构优化提供了较为精确的理论基础。利用准三维模型对竖直埋管地热换热器进行分析与研究得出,不同的行程布置对双U型埋管地热换热器的传热性能有较大影响。就钻孔内热阻的对比,双U型埋管比单U型埋管钻孔内的热阻低,因而双U型埋管地热换热器较单U型埋管地热换热器更为合理。  相似文献   

13.
Ground source heat pump (GSHP) systems are well established as an energy-efficient space conditioning device. However, for better utilization of the ground source, improvement in GSHP performance is desirable, which limits the small temperature difference between the ground and the circulating fluid. In this study, efforts have been made to investigate the performance of a ground heat exchanger (GHX) with a nanofluid as a heat carrier. Mathematical modeling is performed for the closed-loop vertical U-tube GHX with six different (Al2O3, CuO, graphite, multiwalled carbon nanotube, graphene, and Cu) water-based nanofluids. The effect of different operating parameters on GHX length, fluid temperature, and pressure drop with nanofluids is determined. On the basis of the analytical results, it is found that the graphite particle-based nanofluid plays a prominent role to enhance the performance of the GHX as compared with other nanoparticles. The maximum enhancement in the increase in outlet fluid temperature and reduction in pipe length with graphite particle-based nanofluid are 68.3% and 63.3%, respectively, for an increase in temperature difference from 7°C to 15°C between the atmosphere and the ground. Also, with the graphite particle-based nanofluid and the increase in pipe diameter from 20 to 50 mm, the fluid outlet temperature increases up to 11.2%, and the requirement in GHX length reduces up to 55%.  相似文献   

14.
马明珠  张旭 《节能》2007,26(8):8-9
利用生命周期评价方法(LCA)对土壤源热泵与空气源热泵在节能和CO2减排效益方面进行研究比较,考察了土壤源热泵相对于空气源热泵的能耗回收期(EPT)和CO2回收期(CPT)两个指标,结果表明,整个生命周期内土壤源热泵较空气源热泵节能91829.64t标准煤,CO2减排262.5t,相对能耗回收期为2.87a,CO2回收期为0.89 a。  相似文献   

15.
Ground source heat pumps (GSHP) give zero-carbon emission heating at a residential level. However, as the heat is discharged, the temperature of the ground drops, leading to a poorer efficiency. Borehole inter-seasonal thermal storage coupled with GSHP maintains the efficiency at a high level. To adequately utilize the high performance of combined GSHP and the borehole system to further increase system efficiency and reduce cost, such a combined heating system is incorporated into the interconnected multi-carrier system to support the heat load of a community. The borehole finite element (FE) model and an equivalent borehole transfer function are proposed and respectively applied to the optimisation to analyze the variation of GSHP performance over the entire optimisation time horizon of 24 h. The results validate the borehole transfer function, and the optimisation computation time is reduced by 17 times compared with the optimisation using the FE model.  相似文献   

16.
A thermoeconomic analysis of a ground‐source heat pump (GSHP) system with a vertical or horizontal ground heat exchanger, a type of heat delivery system, was performed using the modified productive structure analysis method. In this analysis, the unit cost of geothermal heat delivered to a room using GSHP system was estimated. The unit cost of heat delivered was calculated to be $0.063/kWh for input of electricity with a unit cost of $0.140/kWh for a GSHP with a coefficient of performance (COP) of 3.27. Exergy destruction and monetary losses due to the irreversibility that occurs at each component of the system were also estimated. The unit cost of heat was found to be inversely proportional to the COP of the heat pump and proportional to the electricity input. The greatest monetary loss occurs in the geothermal heat exchanger in which considerable mass of brine flows in long pipes and in the fan‐coil unit which features a complex configuration of pipes in the air passages, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
浅谈地源热泵空调系统的分类及其优越性   总被引:2,自引:0,他引:2  
余红海  周亚素  雷鸣 《节能技术》2006,24(5):441-445
本文简述了地源热泵(GSHP)不同类型的划分,据此对目前常用的各种土壤源热泵、水源热泵作了进一步的分类,并从对自然资源的利用、对环境的影响、一次能源利用率、能效比等不同方面将地源热泵与传统空调系统作了对比性分析,显示了地源热泵系统的优越性,指出地源热泵将会成为21世纪最有效的供热和供冷空调技术之一  相似文献   

18.
The imbalance of heat extracted from the earth by the underground heat exchangers in winter and ejected into it in summer is expected to affect the long term performance of conventional ground source heat pump (GSHP) in territories with a cold winter and a warm summer such as the middle and downstream areas of the Yangtze River in China. This paper presents a new multi-function ground source heat pump (MFGSHP) system which supplies hot water as well as space cooling/heating to mitigate the soil imbalance of the extracted and ejected heat by a ground source heat pump system. The heat transfer characteristic is studied and the soil temperature around the underground heat exchangers are simulated under a typical climatic condition of the Yangtze River. A three-dimensional model was constructed with the commercial computational fluid dynamics software FLUENT based on the inner heat source theory. Temperature distribution and variation trend of a tube cluster of the underground heat exchanger are simulated for the long term performance. The results show that the soil temperature around the underground tube keeps increasing due to the surplus heat ejected into the earth in summer, which deteriorates the system performance and may lead to the eventual system deterioration. The simulation shows that MFGSHP can effectively alleviate the temperature rise by balancing the heat ejected to/extracted from underground by the conventional ground source heat pump system. The new system also improves the energy efficiency.  相似文献   

19.
Christopher J. Wood  Hao Liu  Saffa B. Riffat   《Energy》2010,35(12):4932-4940
Novel methods are sought to provide greater efficiency of the installation of ground heat exchangers for GSHPs (ground source heat pumps) in domestic buildings. An economically viable option is to utilise concrete foundation piles as ground heat exchangers. The objective of this study is to investigate the operation of utilising a piled foundation structure as a ground heat exchanger. A test plot of 72 m2 (ground floor area) was produced with 21 × 10 m deep concrete piles, with a single U tube pipe in each. Ground heat was extracted by a heat pump with the heat loading being varied in line with the date and the average air temperature. Over the 2007/2008 heating season this study had investigated the temperature changes in the foundation piles and the surrounding ground in addition to the heat pump operational performance. The temperature changes observed in the region of the test plot were compared with variations naturally experienced in the ground due to the seasonal climatic influence. The SPF (seasonal performance factor) of the heat pump was 3.62 and the ground temperature at a distance of 5 m from the test plot was seen to be undisturbed by the heat extraction and followed the predicted seasonal variation.  相似文献   

20.
A district space heating and cooling system using geothermal energy from bearing piles was designed in Shanghai and will be installed in two years before 2010. This paper describes the pile-foundation heat exchangers applied in an energy pile system for an actual architectural complex in Shanghai, 30% of whose cooling/heating load was designed to be provided by a ground-source heat pump (GSHP) system using the energy piles. In situ performance tests of heat transfer are carried out to figure out the most efficient type of energy pile and to specify the design of energy pile system. Numerical investigation is also performed to confirm the test results and to demonstrate the medium temperature variations along the pipes. The averaged heat resistance and heat injection rate of different types of energy piles are calculated from the test and numerical results. The effect of pile type, medium flow rate and inlet temperature on thermal performance is separately discussed. From the viewpoint of energy efficiency and adjustability, the W-shaped underground heat exchanger with moderate medium flow rate is finally adopted for the energy pile system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号