首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermoacoustic engine is a kind of novel heat engine based on thermoacoustic effect, with the merits of environmental benignity, simplicity, and reliability. In this work, looped travelling-wave thermoacoustic electric generators (LTTEGs) with one to four thermoacoustic stages have been developed and experimentally studied. It is observed that adding thermoacoustic stages can improve the thermal-electric efficiency of LTTEGs, while whether the extra stages lead to efficiency gain depends on the number of existing stages and other operating parameters (hot temperature, for instance). One main reason is that the Gedeon streaming, which might cause severe heat loss, can be enhanced by adding thermoacoustic stages and increasing hot temperature. The results suggest that the suppression of streaming in the looped thermoacoustic engine with multiple stages is even more urgent than in the traditional travelling-wave engine with only one stage.  相似文献   

2.
This paper presents a parametric analysis of a combined power/cooling cycle, which combines the Rankine and absorption refrigeration cycles, uses ammonia–water mixture as the working fluid and produces power and refrigeration, while power is the primary goal. This cycle, also known as the Goswami Cycle, can be used as a bottoming cycle using waste heat from a conventional power cycle or as an independent cycle using low‐temperature sources such as geothermal and solar energy. Optimum operating conditions were found for a range of ammonia concentration in the basic solution, isentropic turbine efficiency and boiler pressure. It is shown that the cycle can be optimized for net work, cooling output, effective first law and exergy efficiencies. The effect of rectification cooling source (external and internal) on the cycle output was investigated, and it was found that an internal rectification cooling source always produces higher efficiencies. When ammonia vapor is superheated after the rectification process, cycle efficiencies increase but cooling output decreases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
This study evaluates large‐scale low‐grade energy recovery (LS‐LGER) from a conventional coal‐fired Rankine cycle (RC) as a ‘green’ option to offsetting the cost of treating pollution. An energy and exergy analysis of a reference generating station isolates the key areas for investigation into LS‐LGER. This is followed by a second law analysis and a detailed optimization study for a revised RC configuration, which provides a conservative estimate of the possible energy recovery. Cycle optimization based on specific power output, and including compact heat exchanger designs, indicates plant efficiency improvements (with high‐capacity equipment) of approximately 2 percentage points with reduced environmental impact. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A magnetic hydrodynamic (MHD) power generator using an electro‐conductive low‐melting‐point gallium alloy is introduced. An experimental setup is designed and established to investigate its performance with aids of numerical simulations. Theoretical derivations based on Faraday Law are also presented as a theoretical foundation of the present study. It is found that the electric output increases with flow velocity, magnetic strength and electric conductivity, and the theoretical predictions and numerical results are in good agreement with the experimentally measured data. It is understood that in order to obtain a practical power generation, priority should be put on increasing fluid flow velocity and magnetic field strength. The present MHD power generation system has shown to be operated reliably in a long time at room temperature and could be used as a micro‐distributed energy supply system for domestic use in the future. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Waste heat recovery helps reduce energy consumption, decreases carbon emissions, and enhances sustainable energy development. In China, energy-intensive industries dominate the industrial sector and have significant potential for waste heat recovery. We propose a novel waste heat recovery system assisted by a heat pipe and thermoelectric generator (TEG) namely, heat pipe TEG (HPTEG),to simultaneously recover waste heat and achieve electricity generation. Moreover, the HPTEG provides a good approach to bridging the mismatch between energy supply and demand. Based on the technical reserve on high-temperature heat pipe manufacturing and TEG device integration, a laboratory-scale HPTEG prototype was established to investigate the coupling performances of the heat pipes and TEGs. Static energy conversion and passive thermal transport were achieved with the assistance of skutterudite TEGs and potassium heat pipes. Based on the HPTEG prototype, the heat transfer and the thermoelectric conversion performances were investigated. Potassium heat pipes exhibited excellent heat transfer performance with 95% thermal efficiency. The isothermality of such a heat pipe was excellent, and the heat pipe temperature gradient was within 15°C. The TEG's thermoelectric conversion efficiency of 7.5% and HPTEG's prototype system thermoelectric conversion efficiency of 6.2% were achieved. When the TEG hot surface temperature reached 625°C, the maximum electrical output power of the TEG peaked at 183.2 W, and the open-circuit voltage reached 42.2 V. The high performances of the HPTEG prototype demonstrated the potential of the HPTEG for use in engineering applications.  相似文献   

6.
A thermal‐economic analysis of a transcritical Rankine power cycle with reheat enhancement using a low‐grade industrial waste heat is presented. Under the identical operating conditions, the reheat cycle is compared to the non‐reheat baseline cycle with respect to the specific net power output, the thermal efficiency, the heat exchanger area, and the total capital costs of the systems. Detailed parametric effects are investigated in order to maximize the cycle performance and minimize the system unit cost per net work output. The main results show that the value of the optimum reheat pressure maximizing the specific net work output is approximately equal to the one that causes the same expansion ratio across each stage turbine. Relative performance improvement by reheat process over the baseline is augmented with an increase of the high pressure but a decrease of the turbine inlet temperature. Enhancement for the specific net work output is more significant than that for the thermal efficiency under each condition, because total heat input is increased in the reheat cycle for the reheat process. The economic analysis reveals that the respective optimal high pressures minimizing the unit heat exchanger area and system cost are much lower than that maximizing the energy performance. The comparative analysis identifies the range of operating conditions when the proposed reheat cycle is more cost effective than the baseline. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Electrical energy can be generated by the bubble motion inside the magnetic nanofluid under the influence of an external magnetic field. The relative movement of the magnetic particles dispersed in the magnetic fluid is induced through the movement of the bubbles rising by buoyancy force. This disturbs the external magnetic field associated with the generator coil, and electrical energy can be generated. The bubble movement in this complex physical environment was studied through 2D numerical analysis. Commercial magnetic fluids EFH1 and EFH3, manufactured by Ferrotec, were selected as the working fluid for the investigation. A level set method was used to analyze the 2‐phase flow of bubbles motion in the magnetic fluid. The effect of magnetic particle concentration on the behavior of bubbles and the change of bubble flow patterns through interaction between bubbles were observed by analysis. In addition, the influence of the magnetic force caused by the external magnetic field on the behavior of the bubble was also investigated. The following results can be obtained through the analysis of this study. The high concentration of magnetic particles increases the viscosity and attenuates the rising velocity and the lateral oscillation of the bubbles. The interaction of the 2 bubbles depends on the initial relative distance. Merging occurs only between 2 bubbles within a certain initial distance, which maximizes disturbance of the surrounding magnetic fluid. The magnetic force exerted by the permanent magnets externally applied is relatively small in comparison with gravity. Therefore, the effect on the rise behavior of the bubble is not significant. In consideration of the overall external force and flow conditions, the pattern of the bubble flow that maximizes the efficiency in the present electric energy generation concept was found.  相似文献   

8.
Free piston linear generator (FPLG) is a promising range extender for the electrical vehicle with unparallel advantages, such as compact structure, higher system efficiency, and reduced maintenance cost. However, due to the lack of the mechanic crankshaft, the related piston motion control is a challenge for the FPLG which causes problems such as misfire and crash and limits its widespread commercialization. Aimed at resolving the problems as misfire, a single-piston FPLG prototype has been designed and manufactured at Shanghai Jiao Tong University (SJTU). In this paper, the development process and experimental validation of the related control strategies were detailed. From the experimental studies, significant misfires were observed at first, while the FPLG operated in natural-aspiration conditions. The root cause of this misfire was then identified as the poor scavenging process, and a compressed air source was leveraged to enhance the related scavenging pressure. Afterward, optimal control parameters, in terms of scavenging pressure, air-fuel equivalence ratio, and ignition position, were then calibrated in this charged-scavenging condition. Eventually, the FPLG prototype has achieved a continuous stable operation of over 1000 cycles with an ignition rate of 100% and a cycle-to-cycle variation of less than 0.8%, produced an indicated power of 2.8 kW with an indicated thermal efficiency of 26% and an electrical power of 2.5 kW with an overall efficiency of 23.2%.  相似文献   

9.
A thermoelectric generator (TEG) module is designed to harvest low grade waste heat from a 2 kW fuel cell vehicle and improve its energy utilization. The module integrates a TEG cell with a heat pipe and a finned heat sink. A numerical model is developed based on an experiment setup where the fuel cell temperature is 45–60 °C while the cruise speed is 25 kmh?1. The numerical model is validated with less than 5% deviation. Extended cases are simulated for series and parallel power train configuration under changes to the waste heat temperature and vehicle speeds to evaluate the power and heat recovery ratio. A single TEG cell output between 2 and 3 W is achievable even at low grade heat. The parallel drive generates 50% more power than the series drive at 100 kmh?1 speed. A 2% heat recovery is theoretically achievable for a 16 cell module assembly.  相似文献   

10.
The use of low‐temperature heat (between 50 and 90°C) is studied to drive absorption systems in two different applications: refrigeration and heat pump cycles. Double‐ and triple‐stage absorption systems are modelled and simulated, allowing a comparison between the absorbent–refrigerant solutions H2O–NH3, LiNO3–NH3 and NaSCN–NH3. The results obtained for the double‐stage cycle show that in the refrigeration cycle the LiNO3–NH3 solution operates with a COP of 0.32, the H2O–NH3 pair with a COP of 0.29 and the NaSCN–NH3 solution with a COP of 0.27, when it evaporates at ?15°C, condenses and absorbs refrigerant at 40°C and generates vapour at 90°C. The results are presented for double‐ and triple‐stage absorption systems with evaporation temperatures ranging between ?40 and 0°C and condensation temperatures ranging from 15°C to 45°C. The results obtained for the double‐stage heat pump cycle show that the LiNO3–NH3 solution reaches a COP of 1.32, the NaSCN–NH3 pair a COP of 1.30 and the H2O–NH3 mixture a COP of 1.24, when it condenses and absorbs refrigerant at 50°C, evaporates at 0°C and generates vapour at 90°C. For the double‐ and triple‐stage cycles, the results are presented for evaporation temperatures ranging between 0 and 15°C. The minimum temperature required in the generators to operate the refrigeration and heat pump cycles are also presented. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
The present numerical study reports the chemically reacting boundary layer flow of a magnetohydrodynamic second‐grade fluid past a stretching sheet under the influence of internal heat generation or absorption with work done due to deformation in the presence of a porous medium. To distinguish the non‐Newtonian behaviour of the second‐grade fluid with those of Newtonian fluids, a very popularly known second‐grade fluid flow model is used. The fourth order momentum equation with four appropriate boundary conditions along with temperature and concentration equations governing the second‐grade fluid flow are coupled and highly nonlinear in nature. Well‐established similarity transformations are efficiently used to reduce the dimensional flow equations into a set of nondimensional ordinary differential equations with the necessary conditions. The standard bvp4c MATLAB solver is effectively used to solve the fluid flow equations to get the numerical solutions in terms of velocity, temperature, and concentration fields. Numerical results are obtained for a different set of physical parameters and their behaviour is described through graphs and tables. The viscoelastic parameter enhances the velocity field whereas the magnetic and porous parameters suppress the velocity field in the flow region. The temperature field is magnified for increasing values of the heat source/sink parameter. However, from the present numerical study, it is noticed that the flow of heat occurs from sheet to the surrounding ambient fluid. Before concluding the considered problem, our results are validated with previous results and are found to be in good agreement.  相似文献   

12.
There are many types of triboelectric nanogenerators (TENGs) which differ in their operational modes (contact mode, sliding mode, etc.), converting mechanical energy into electrical energy. This paper introduces electricity generation from a small low‐temperature differential heat engine capable of utilizing low‐grade thermal energy. The engine is similar to the Gamma‐type Stirling engine and could run on temperature differentials ranging from 90 down to a few degrees Celsius. The work presented here gives technical details of how a small low‐temperature differential heat engine could be integrated with a TENG for electricity generation. Two different schemes were tested for the operation of TENG: one in non‐contact sliding mode and the other in vertical contact‐separation mode. For the temperature difference of 74.4 °C, the former delivered a maximum output voltage of 70 V whereas the latter resulted in 35 V. A maximum combined output voltage of 105 V was obtained capable of charging a 4.7 μF capacitor and discharged through LED lighting. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
The Caputo and Caputo–Fabrizio derivative are applied to study a second‐grade nanofluid over a vertical plate. A comparative analysis is presented to study the unsteady free convection of a second‐grade nanofluid with a new time–space fractional heat conduction. The governing equations with mixed time–space fractional derivatives are non‐dimensionalized and solved numerically, and a comparison between the Caputo and the Caputo–Fabrizio models is made. It is found that the temperature is higher for the Caputo–Fabrizio fractional model than the Caputo model, but the higher velocity only exists near the vertical plate for the Caputo–Fabrizio model than the Caputo model. Moreover, the velocity for the Caputo model will exceed the Caputo–Fabrizio model as y evolves.  相似文献   

14.
In this study, the authors attempted to introduce a simulation technique for radiation‐convection heat transfer in the high‐temperature fields of industrial furnaces, boilers, and gas turbine combustors. The convection effect was analyzed by a differential equation, but the radiation effect was analyzed by an integral equation. Thus, it was not easy to arrange both effects using the same type of equations. Then, the authors introduced the zone method and Monte Carlo method for the integral equation of the radiation effect and the finite difference method for the differential equation of the convection effect. A three‐dimensional analysis of the high‐temperature furnace was performed by this simulation technique to obtain its temperature distribution. Furthermore, another radiation‐convection heat transfer analysis in the low‐temperature living room was performed by the same technique. Finally, the authors tried to develop a computer software for radiation‐convection heat transfer and described their idea of software construction for the above. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(5): 391–407, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10042  相似文献   

15.
With the steam obtained from the waste heat of high temperature semi-coke, the hydrogen production through gasification method is considered more commercially. The heat transfer of semi-coke bed and steam was investigated using an unsteady convection heat transfer three-dimensional model of semi-coke. The effects of particle size, steam flow and particle bed thickness on heat transfer characteristics were considered. The particle temperature calculated by three-dimensional model was in good agreement with the corresponding particle temperature of experiment. The heat transfer characteristics of single particle, the particle temperature, the amount of heat recovery and the heat flux were investigated. The results show that, in the first 10 min of the heat transfer of semi-coke bed and steam, the bottom particle temperature decreases rapidly, but the top particle temperature is almost unchanged. The heat transfer rate evolution of the single particle in different positions is revealed. The heat transfer rate evolution of the bottom particle is different from that of the middle particle and top particle, and the heat transfer rate evolution of middle particle is similar to that of the top particle. The particle size, the steam flow and the particle bed thickness have great influence on the heat transfer mechanism of semi-coke and steam, and the 7.5 kg/h is considered to be the best steam flow for heat recovery. The intrinsic heat transfer mechanism between semi-coke bed and steam was revealed.  相似文献   

16.
There are two primary laws including the first and second laws of thermodynamics that should be used to assess a process. Generally, only the first law of thermodynamics is investigated in numerical solutions, so it is possible to exist some numerical results that do not satisfy the second law of thermodynamics because of numerical errors. To achieve reliable numerical outcomes, it is better to apply two indexes of HEAT BALANCE ERROR and VIRTUAL ENTROPY GENERATION, which come from the second law of thermodynamics. In other words, an approach to develop computational fluid dynamics investigations is to take second law of thermodynamics into consideration. In this study, two different models including counterflow double‐pipe heat exchanger and single‐pipe with constant wall temperature are simulated in various cases with different efficiencies and temperature ratios. It is found that 46 cases of total 523 double‐pipe models and 24 cases of total 402 simulations of single‐pipe models had unacceptable results regarding to two mentioned criteria. The results revealed that it is less likely to gain unreliable results in smaller efficiency and lower inlet temperature for double‐pipe heat exchanger and single‐pipe respectively.  相似文献   

17.
The present numerical analysis pertains to the heat transfer enhancement in a plate‐fin heat exchanger employing triangular shaped fins with a rectangular wing vortex generator on its slant surfaces. The study has been carried out for three different angles of attack of the wing, i.e., 15°, 20° and 26°. The aspect ratio of the wing is not varied with its angle of attack. The flow considered herein is laminar, incompressible, and viscous with the Reynolds number not exceeding 200. The pressure and the velocity components are obtained by solving the continuity and the Navier– Stokes equations by the Marker and Cell method. The present analysis reveals that the use of a rectangular wing vortex generator at an attack angle of 26° results in about a 35% increase in the combined spanwise average Nusselt number as compared to the plate‐triangular fin heat exchanger without any vortex generator. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20285  相似文献   

18.
A new type of gas burner for Stirling engine that can recover adequate heat from exhaust gas was designed based on the plate heat exchanger and low‐swirl combustion technology, which consists of three components: a cyclone, a burner, and a circular plate heat exchanger. The circular plate heat exchanger tightly wound around the combustion chamber plays a high efficiency of heat recovery role. In consideration of the radial symmetry of the burner, a three‐dimensional numerical simulation was carried out by Ansys15. The velocity distribution, temperature distribution, and pressure distribution of the combustion gas were presented respectively. Strong backflow that came from the exhaust gas around the root of the flame in the combustion chamber and a vortex below the inlet of the exhaust gas channel were found, which were beneficial for the combustion and improving the uniformity of temperature distribution. Combustion behaviors of the burner under standard operating conditions were obtained, the highest temperature was about 2200 K in burner and the exhaust gas entered the plate heat exchanger at the temperature of 1375 K and exited at 464 K, with the waste heat recovery efficiency over 65.8%. And, the air‐fuel ratio and combustion power had negligible effect on the waste heat recovery efficiency.  相似文献   

19.
An important method to increase the efficiency of thermal power plants is to recover the exhaust gas heat at the boiler cold‐end with the stepwise integration of a steam turbine heat regenerative system. To this end, there are currently three typical heat recovery processes, that is, a low‐temperature economizer (LTE), segmented air heating (SAH) and bypass flue (BPF). To provide useful guidance to thermal power plants for optimal and efficient processes, the thermal economy and techno‐economic performance of the three aforementioned processes were calculated and compared using an in‐service 600‐MW hard‐coal‐fired ultra‐supercritical power unit as a reference. The results demonstrate that with the use of the LTE, SAH and BPF, respectively, to recover the exhaust heat, reducing the exhaust temperature from 122 °C to 90 °C, the net standard coal consumption rate of the 600‐MW unit can be reduced by 1.51, 1.71 and 2.81 g/(kW h). The initial costs of the three heat recovery projects are 1.69, 2.91 and 2.53 million USD. If the 600‐MW unit runs 5500 h per year at the rated load, the three processes can increase the earnings of the unit by 0.49, 0.52 and 0.94 million USD from coal savings annually, meaning that their dynamic payback periods are 4.42, 8.66 and 3.29 years, respectively. The results indicate that for a hard‐coal‐fired power unit, the coal savings achieved by exhaust heat recovery are notable. Among the three processes, SAH shows the worst techno‐economic performance because it induces a significant increase in initial costs while obtaining a limited increase in thermal economy, while BPF exhibits the best techno‐economic performance owing to the significant increase in thermal economy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
A model is developed to simulate a cross‐flow heat exchanger, including fins, in the wall of which thermoelectric generators are sandwiched. Such a system could be used for waste heat recovery. The model is used to optimize the device based on several objective functions: total volume, total number of thermoelectric modules, power output, and pumping power. The design variables are the local distribution of modules and of current, the shape of the fins, and the division of the heat exchanger in sub‐channels. Pareto fronts are achieved with a multi‐objective genetic algorithm, and are presented here. The results show that the number of sub‐channels in the heat exchanger has a larger impact on the overall performance than the fin geometry for this particular problem. Also, the net power output is mostly correlated to the number of thermoelectric modules, and less to the heat exchanger volume. Various relations between the different competing objectives are shown and analyzed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号