首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In proton exchange membrane fuel cells, baffled flow channels can enhance the reactant transfer and improve the cell performance. Many different baffled flow channels have been numerically studied in previous published papers. However, what kind of baffled flow channels can improve the cell performance most is still unknown. In this simulation work, a two‐dimensional, two‐phase, nonisothermal, and steady‐state model of proton exchange membrane fuel cells is developed. The mass transfer and cell performance of PEMFCs with different baffled flow channels have been numerically compared. Simulation results show that the rectangular baffle can enhance the reactant transfer most and improve the cell performance most; however, the power loss in rectangular baffled flow channel is also the highest. To inherit the advantages and overcome the shortages of the rectangular baffled flow channel, an optimized baffled flow channel is developed. In this newly developed baffled flow channel, the windward side is designed as the streamline shape and the leeward side is designed as the sloped shape. Results of the simulation also show that the optimized baffled flow channel can reduce the power loss accounted by the pumping power in reactant delivering process and the cell performance can be further improved.  相似文献   

2.
In this study, a two-dimensional, two-phase, non-isothermal and steady-state modified model of proton exchange membrane fuel cells is developed. The Forchheimer's effect (Non-Darcy effect) is coupled in the model, and its impact on liquid water removing process in flow channels with baffles having different shapes is discussed. Simulation results show that the liquid water is able to be removed more at the regions around baffles. At the same time, the baffle shapes reform the liquid water distribution. When using the baffles having larger dimensions (e.g. using rectangular baffles or trapezoidal baffles), the flow spaces around baffles decrease more and the liquid water is removed more because of the increase in local flow velocity. As a result, the concentration polarization is weakened and cell performance is improved more. Moreover, a streamline baffled flow channel that is designed for the purpose of both increasing the cell performance and avoiding excessive increase in pressure drops is discussed. Simulation results show that this flow channel design can both avoid too much increase in pressure drop and facilitate the liquid water removing out from the fuel cell.  相似文献   

3.
Installing blocks in cathode flow field can effectively enhance the transfer of oxygen from channel to the reaction sites of catalyst layer, thus boosting the performance of the fuel cell. In this work, an optimization methodology combined with genetic algorithm and three-dimensional fuel cell modeling is developed to optimize the design of partially blocked channel for a proton exchange membrane fuel cell (PEMFC) with parallel flow field. In the optimization, the heights of the blocks are assumed to be linearly increased and two parameters (i.e., height of the first block and the height increase between adjacent blocks) are considered. The impact of the optimized design of the blocked channel on cell performance is analyzed, and the effects of the optimized blocked channel designs with increasing-height and uniform-height block height distributions were also compared in detail. With this optimization methodology, the optimal height distribution of the blocks in the channel can be obtained for various block numbers. With varying the block numbers, the cell voltage and net cell power are firstly improved until the maximal values reached and then lowered. The maximal net cell power is reached for the block number of 16. As compared with the flow channel without adding blocks, the net power of the PEMFC can be enhanced by about 10.9%. For pressure drop behavior, with the optimized block height distribution, the total pressure drop in cathode flow field can be maintained in similar level with varying block numbers from 4 to 20. Considering both the net power and pressure drop, the optimized blocked channels with adding 8 to 16 blocks are recommended in this study. Besides, it is indicated that the performance of the optimized block design with increasing-height is higher than that of the optimized block design with uniform-height.  相似文献   

4.
Reactants and products distribute unevenly in flow channels of proton exchange membrane fuel cells, therefore, the baffle heights and locations in flow channels exhibit effects on species transportation. In this study, a two-dimensional, two-phase, non-isothermal, and steady state model is developed to study the baffle heights and locations effects on mass transportation and performance of the fuel cells with orientated-type channels. Simulation results show that: uniformly distributing baffles in a flow channel can both enhance the reactants transportation and help expel more liquid water, resulting in higher net powers; although using a big baffle at the upstream segment of a channel enhances the performance more, while the water accumulating is also increased more. Reducing the baffle heights accounts for weaker reactants transfer enhancements and worse liquid water expelling; moving the baffles backwardly also causes the decrease in reactant transportation, while the liquid water expelling process is increased.  相似文献   

5.
Orientated-type flow channels having porous blocks enhance the reactant transfer into gas diffusion layers of proton exchange membrane fuel cells. However, because of the blockages accounted by baffles and porous blocks in channel regions, pumping power increases. In this study, with the aim of further reducing the pumping power in flow channels with porous-blocked baffles, an orientated-type flow channel with streamline baffles having porous blocks is proposed. By employing an improved two-fluid model, cell performance, liquid water distribution and pumping power in a single flow channel are numerically studied. The simulation results show that the baffles with porous blocks increase the cell performance, and the streamline baffles with larger volumes further increase the performance; the produced water in porous regions is ejected more under inertial effect, especially at the regions near to baffles in gas diffusion layers and inside porous blocks. In addition, by using the streamline baffles, the excessive increase in power loss is further reduced. Moreover, the location and porosity effects of baffles with porous blocks are analyzed. Simulation results show that the location exhibits obscure effects on reactant transfer and cell performance, while the liquid water can be removed more when the porous blocked baffles are concentrated at downstream. The net power is enhanced more when using three porous blocks with the porosity of 0.00.  相似文献   

6.
Orientated-type flow channels of proton exchange membrane fuel cells cause non-Darcy effect occurring in flow regions. Therefore, the species transportation is affected by inertial effect. However, how the inertial force affects convection and diffusion of different species has not been discussed before. Thus, a modified two-dimensional, non-isothermal, two-phase and steady state model considering non-Darcy effect is employed in this study, and reactants and products transportations through diffusion and convection under inertial effects are quantitatively analyzed for the first time. Simulation results reveal that the convective transportation of reactants increases more under the influence of inertial force; water vapor transportation through convection increases the water content in porous regions. At the same time, liquid water expels more rapidly from gas diffusion layers under baffle regions, and enlarging baffle volumes increases the regions where the liquid water is rapidly removed under the inertial effect.  相似文献   

7.
The flow field optimization design is one of the important methods to improve the performance of proton exchange membrane fuel cell (PEMFC). In this study, a new structure with staggered blocks on the parallel flow channels of PEMFC and auxiliary flow channels under the ribs is proposed. Through numerical calculation method, the effect of blocks auxiliary flow field (BAFF) on pressure drop, reactant distribution and liquid water removal in the fuel cells are investigated. The results show that when the operating voltage is 0.5 V, the current density of BAFF is 21.74% higher than that of the straight parallel flow field (SPFF), and the power density reaches 0.65 W cm?2. BAFF improves performance by equalizing the pressure drop across sub-channels, promoting the uniform distribution of reactant, and enhancing transport across the ribs. In addition, through parameter analysis, it is found that BAFF can discharge liquid water in time at the conditions of high humidification, high current density and low temperature, which ensures the output performance of the fuel cell and improves the durability of the fuel cell. This paper provides new ideas for the improvement of PEMFC flow field design, which is beneficial to the development of PEMFC with high current density.  相似文献   

8.
介绍了目前质子交换膜燃料电池(PEMFC)在膜、电极、单电池、电堆或系统等四个结构尺度上的传热传质过程研究;主要讨论了PEMFC内的多组分传输、膜内水管理和多孔电极内的传热、传质过程;认为建立在孔尺度水平的研究方法是深入探讨电池内多孔材料微结构传热传质的有效途径;多维、多尺度模型的建立及其模拟计算能准确反映PEMFC内部的传递过程机理,为进一步优化电池结构和操作条件提供有价值的参考。  相似文献   

9.
质子交换膜燃料电池是直接将化学能转换为电能的装置,双极板上的流道结构对燃料电池的工作性能具有较大的影响。根据应用要求设计了具有平行流道、蛇形流道及希尔伯特分形流道的双极板结构,模拟计算了氢气在不同类型的流道和气体扩散层中的分布状态,分析了燃料电池的输出电流密度和功率密度随电极间电压的变化特点,比较了不同的流道结构对燃料电池输出电流密度的影响,以及不同的工作温度及气体压强的情况下,燃料电池输出电流密度随温度及压强的变化规律。  相似文献   

10.
This study focuses on the investigation of the electrochemical reaction along a novel cathode flow channel of PEM fuel cells with various shoulder/channel (S/C) ratios at the outlet port. A three-dimensional mathematical model, considering conservation principles of mass, momentum, species and electric current is employed. Local variations of important model variables such as reactant concentration and local current density are presented by contour plots to elucidate the effects of channel geometry on transport process, catalyst reaction and cell performance. The potential fields of solid and membrane phases are also resolved in the cell domain and the driving force of the electrochemical reactions – the catalyst activation overpotential – is harnessed in modeling. Numerical calculations reveal the influence of the cathode channel configuration on the local distributions of various model variables. The results also show the dependence between optimal channel configuration and cell operating condition. At a medium reaction rate, the reaction sites underneath the shoulder region generate more current than the channel region. Therefore, a convergent channel configuration with a larger S/C ratio at the outlet port develops more current because such a design facilitates the electron transport and enhances local activation overpotential. However, as the cell voltage decreases and the reaction rate increases, such configuration loses its merit gradually as the requirement for a higher reactant concentration is more important and the reaction sites underneath the channel region have a higher reaction rate. Consequently, the divergent channel configuration with a lower S/C ratio of 0.67 performs better at a cell voltage of 0.22 V.  相似文献   

11.
An appropriate flow field in the bipolar plates of a fuel cell can effectively enhance the reactant transport rates and liquid water removal efficiency, improving cell performance. This paper proposes a novel serpentine-baffle flow field (SBFF) design to improve the cell performance compared to that for a conventional serpentine flow field (SFF). A three-dimensional model is used to analyze the reactant and product transport and the electrochemical reactions in the cell. The results show that at high operating voltages, the conventional design and the baffled design have the same performance, because the electrochemical rate is low and only a small amount of oxygen is consumed, so the oxygen transport rates for both designs are sufficient to maintain the reaction rates. However, at low operating voltages, the baffled design shows better performance than the conventional design. Analyses of the local transport phenomena in the cell indicate that the baffled design induces larger pressure differences between adjacent flow channels over the entire electrode surface than does the conventional design, enhancing under-rib convection through the electrode porous layer. The under-rib convection increases the mass transport rates of the reactants and products to and from the catalyst layer and reduces the amount of liquid water trapped in the porous electrode. The baffled design increases the limiting current density and improves the cell performance relative to conventional design.  相似文献   

12.
Proton exchange membrane fuel cell (PEMFC) performance degrades when carbon monoxide (CO) is present in the fuel gas; this is referred to as CO poisoning. This paper investigates CO poisoning of PEMFCs by reviewing work on the electrochemistry of CO and hydrogen, the experimental performance of PEMFCs exhibiting CO poisoning, methods to mitigate CO poisoning and theoretical models of CO poisoning. It is found that CO poisons the anode reaction through preferentially adsorbing to the platinum surface and blocking active sites, and that the CO poisoning effect is slow and reversible. There exist three methods to mitigate the effect of CO poisoning: (i) the use of a platinum alloy catalyst, (ii) higher cell operating temperature and (iii) introduction of oxygen into the fuel gas flow. Of these three methods, the third is the most practical. There are several models available in the literature for the effect of CO poisoning on a PEMFC and from the modeling efforts, it is clear that small CO oxidation rates can result in much increased performance of the anode. However, none of the existing models have considered the effect of transport phenomena in a cell, nor the effect of oxygen crossover from the cathode, which may be a significant contributor to CO tolerance in a PEMFC. In addition, there is a lack of data for CO oxidation and adsorption at low temperatures, which is needed for detailed modeling of CO poisoning in PEMFCs. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
14.
温度、压力和湿度对质子交换膜燃料电池性能的影响   总被引:16,自引:0,他引:16  
以Nafion质子交换膜燃料电池(PEMFC)为对象,通过测量电池的电流—电压、电流—功率和电压—时间曲线,研究了温度、压力和湿度等条件对电池性能的影响,同时也考察了电池的能量转换效率及短期运行时的稳定性,得出了电池较佳的工作条件。实验和计算结果表明:在反应温度为72℃、H2和02压力分别为0.2MPa、进气湿度饱和时,电池最大输出功率可达0.7W.cm^-2;在0.3W.cm^-2~0.7W.cm^-2范围内电池能量转换效率为62%—34%;在大电流密度下电池仍能稳定工作。  相似文献   

15.
Such factors as mole fractions of species, water generation, and conductivity influence the performance of proton exchange membrane fuel cells (PEMFCs). The geometrical shape of the fuel cells also should be considered a factor in predicting the performance because this affects the species' reaction speed and distribution. Specifically, the position between the channel and rib is an important factor influencing PEMFC performance because the current density distribution is affected by the channel and rib position. Three main variables that decide the current density distribution are selected in the paper: species concentration, overpotentials, and membrane conductivity. These variables should be considered simultaneously in deciding the current density distribution with the given PEMFC cell voltage. In addition, the inlet relative humidity is another factor affecting current density distribution and membrane conductivity. In this paper, two channel‐to‐rib models, namely, channel‐to‐channel and the channel‐to‐rib, are considered for comparing the PEMFC performance. Thorough performance comparisons between these two models are presented to explain which is better under certain parameters. A three‐dimensional numerical PEMFC model is developed for obtaining the current density distribution. Water transfer mechanism because of electro osmotic drag and concentration diffusion also is presented to explain the PEMFC performance comparison between the two models. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The inverse design problem technique presented in this paper is intended for optimizing the shape of the gas channel at the cathode side in a proton exchange membrane fuel cell (PEMFC). The technique uses the desired current densities located on a carbon plate near the outlet of the channel at the cathode side as a starting point. The desired current density distributions can be obtained by modifying the current density distributions of the existing PEMFC with rectangular gas channels. The geometry of the redesigned gas channel is generated using a B-spline curve method, which enables the shape of the fuel channel to be completely specified using only a small number of control points, thus applying the technique of parameter estimation for the inverse design problem. Results show that by utilizing the redesigned optimal gas channel, the total current of the PEMFC can be increased, and at the same time the phenomenon of saturated water accumulation in the channel can be greatly reduced.  相似文献   

17.
18.
Flow channel design has attracted more and more attention with the evolution of fuel cell technology. Compared with conventional 2D flow channel, 3D flow channel has been proved to improve the performance of proton exchange membrane fuel cell with great enhancement of reactant transport in many researches. In this paper, flow fields of parallel 2D, simplified 3D and 3D with inclination are presented to study the transport and distribution characteristics of reactant and water inside a fuel cell, and efficiency evaluation criterion is proposed to evaluate the superiority of the flow channel design. It is found that 3D flow fields are superior compared with parallel 2D flow channel, with improved capacity of mass transfer, uniform water distribution and advanced water removal ability. The performance improvements of both 3D flow channel designs become significant at elevated current density, with the output voltage increasing to 4.4% at 1.6 A cm?2 and up to 10% at 2 A cm?2. Compared with 3D flow channel with inclination, simplified 3D flow channel shows smaller pressure drop, and it has better performance than that of 2D flow channel. Considering both the performance and flow resistance, simplified 3D flow channel performs the best with high efficiency and easy-processing, thus it is the future direction of flow design.  相似文献   

19.
A serpentine flow field with outlet channels having modified heights or lengths was designed to improve reactant utilization and liquid water removal in proton exchange membrane (PEM) fuel cells. A three-dimensional full-cell model was developed to analyze the effects of the contraction ratios of height and length on the cell performance. Liquid water formation, that influences the transport phenomena and cell performance, was included in the model. The predictions show that the reductions of the outlet channel flow areas increase the reactant velocities in these regions, which enhance reactant transport, reactant utilization and liquid water removal; therefore, the cell performance is improved compared with the conventional serpentine flow field. The predictions also show that the cell performance is improved by increments in the length of the reduced flow area, besides greater decrements in the outlet flow area. If the power losses due to pressure drops are not considered, the cell performance with the contracted outlet channel flow areas continues to improve as the outlet flow areas are reduced and the lengths of the reduced flow areas are increased. When the pressure losses are also taken into account, the optimal performance is obtained at a height contraction ratio of 0.4 and a length contraction ratio of 0.4 in the present design.  相似文献   

20.
As the power density of a proton exchange membrane fuel cell (PEMFC) increases, the problems of internal heat accumulation and non-uniform temperature distribution are becoming significant. In this paper, a novel cooling channel with dimple structures is designed and a three-dimensional PEMFC numerical model is established. When comparing to the conventional channels, the heat transfer performance of dimpled channel is 10% higher than the smooth one, and the pressure loss is almost 13% lower than that of wavy channel. In addition, the optimization of dimple structure parameters is investigated based on the index of uniformity temperature (IUT) and performance evaluation criteria (PEC) of heat transfer. It is found that a diameter-to-depth ratio of 4 is recommended when the dimple diameter is less than 0.80 mm. Furthermore, the clock-wise vortex observed inside the dimple is considered to be the main reason affecting heat exchange. This study will contribute to the design of cooling channels for high-power density PEMFCs in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号