共查询到20条相似文献,搜索用时 31 毫秒
1.
A well‐defined graft copolymer, polystyrene‐graft‐poly(methyl methacrylate), was synthesized in two steps. In the first step, styrene and p‐vinyl benzene sulfonyl chloride were copolymerized via reversible addition–fragmentation chain transfer polymerization (RAFT) in benzene at 60 °C with 2‐(ethoxycarbonyl)prop‐2‐yl dithiobenzoate as a chain transfer agent and 2,2′‐azobis(isobutyronitrile) as an initiator. In the second step, poly[styrene‐co‐p‐(vinyl benzene sulfonyl chloride)] was used as a macroinitiator for the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in toluene at 80 °C with CuCl as a catalyst and 2,2′‐bipyridine as a ligand. With sulfonyl chloride groups as the initiating sites for the ATRP of MMA, high initiation efficiencies were obtained. Copyright © 2006 Society of Chemical Industry 相似文献
2.
Development of new chemosensors that are selective and sensitive to Cu2+ and CN? ions, especially in aqueous media, is of tremendous importance. We report the synthesis of a new block copolymer that is capable of highly selective and sensitive detection of Cu2+ and CN? ions in aqueous media. Poly(t‐butylacrylate)‐block‐poly(3‐bromopropylacrylate) was prepared using the reversible addition–fragmentation chain transfer polymerization technique. This block copolymer was reacted with 2,4‐dihydroxybenzaldehyde followed by reaction with rhodamine B hydrazide for successful incorporation of the desired rhodamine units into the block copolymer structure. Cu2+‐induced opening of the spirolactam ring of the rhodamine units resulted in rapid and easily noticeable colour change, thus enabling a highly selective detection of Cu2+ ions in aqueous media for concentrations as low as 2 µmol L?1. We further demonstrate that this Cu2+ bound polymer complex can further act as a selective and sensitive sensing platform for CN? in aqueous media with concentrations <1 µmol L?1 (0.06 ppm). Moreover, the polymer can also be used to remove Cu2+ from aqueous media. © 2014 Society of Chemical Industry 相似文献
3.
Polymer‐grafted inorganic particles (PGIPs) are attractive building blocks for numerous chemical and material applications. Surface‐initiated controlled radical polymerization (SI‐CRP) is the most feasible method to fabricate PGIPs. However, a conventional in‐batch reaction still suffers from several disadvantages, including time‐consuming purification processes, low grafting efficiency, and possible gelation problems. Herein, a facile method is demonstrated to synthesize block copolymer–grafted inorganic particles, that is, poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMEMA)‐b‐poly(N‐isopropylacrylamide) (PNIPAM)–grafted silica micro‐particles using continuous flow chemistry in an environmentally friendly aqueous media. Immobilizing the chain transfer agent and subsequent SI‐CRP can be accomplished sequentially in a continuous flow system, avoiding multi‐step purification processes in between. The chain length (MW) of the grafted polymers is tunable by adjusting the flow time or monomer concentration, and the narrower molar mass dispersity (Ð < 1.4) of the grafted polymers reveals the uniform polymer chains on the particles. Moreover, compared with the in‐batch reaction at the same condition, the continuous system also suppresses possible gelation problems. 相似文献
4.
The functionalization of poly(ester‐urethane) (PUR) surface was conducted using radiation‐induced grafting. A thermosensitive layer constructed from N‐isopropylacrylamide (NIPAAm) was introduced onto a polyurethane film and characterized using attenuated total reflection Fourier transform infrared and X‐ray photoelectron spectroscopies and contact angle measurements. Size exclusion chromatography was used to analyse the PUR‐graft‐PNIPAAm copolymers and homopolymers formed in solution. Additionally, reversible addition–fragmentation chain transfer (RAFT) polymerization was performed in order to obtain PNIPAAm‐grafted surfaces with well‐defined properties. Atomic force microscopy was used to evaluate the surfaces synthesized via conventional and RAFT‐mediated grafting methods. The results of various techniques confirmed the successful grafting of NIPAAm from PUR film. © 2015 Society of Chemical Industry 相似文献
5.
Guadalupe del C Pizarro Oscar G Marambio Manuel Jeria‐Orell Daniela T Valdés Kurt E Geckeler 《Polymer International》2013,62(10):1528-1538
A series of well‐defined amphiphilic poly[(2‐hydroxyethyl methacrylate)‐block‐(N‐phenylmaleimide)] diblock copolymers containing hydrophilic and hydrophobic blocks of different lengths were synthesized by atom transfer radical polymerization. The properties of the diblock copolymers and their ability to form large compound spherical micelles are described. Their optical, morphological and thermal properties and self‐assembled structure were also investigated. The chemical structure and composition of these copolymers have been characterized by elemental analysis, Fourier transform infrared, 1H NMR, UV–visible and fluorescence spectroscopy, and size exclusion chromatography. Furthermore, the self‐assembly behavior of these copolymers was investigated by transmission electron microscopy and dynamic light scattering, which indicated that the amphiphilic diblock copolymer can self‐assemble into micelles, depending on the length of both blocks in the copolymers. These diblock copolymers gave rise to a variety of microstructures, from spherical micelles, hexagonal cylinders to lamellar phases. © 2013 Society of Chemical Industry 相似文献
6.
Novel, monodispersed, and well‐defined ABA triblock copolymers [poly(dimethylamino ethyl methacrylate)–poly(ethylene oxide)–poly(dimethylamino ethyl methacrylate)] were synthesized by oxyanionic polymerization with potassium tert‐butanoxide as the initiator. Gel permeation chromatography and 1H‐NMR analysis showed that the obtained products were the desired copolymers with molecular weights close to calculated values. Because the poly(dimethylamino ethyl methacrylate) block was pH‐ and temperature‐sensitive, the aqueous solution behavior of the polymers was investigated with 1H‐NMR and dynamic light scattering techniques at different pH values and at different temperatures. The micelle morphology was determined with transmission electron microscopy. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
7.
In this paper, we designed and synthesized five novel reversible addition–fragmentation chain transfer (RAFT) agents bearing naphthyl moieties in the Z or R groups, including 3,4,5-trimethoxy-benzyl dithio-2-naphthalenoate (TOBDN), 4-nitrobenzyl dithio-2-naphthalenoate (NBDN), 1-menaphthyl 4-cyanodithiobenzoate (NCDB), 1-menaphthyl dithiobenzoate (NDB) and 1-menaphthyl dithio-2-naphthalenoate (NDN). The RAFT polymerizations of styrene mediated by these RAFT agents with AIBN as the initiator at 80 °C were conducted and evaluated. Except for NCDB, the RAFT agents showed good control over the polymerization at different RAFT agent concentrations: the Mn,GPC increased linearly with the monomer conversion, and the PDIs of the polymers were relatively low (PDI = 1.20–1.50). The structure of RAFT agents bearing three different R groups with naphthyl as the Z group showed less effects on the polymerization rate, while those bearing different Z groups with 1-menaphthyl as the R group presented significant effects on the polymerization rates. The polymerization rate with phenyl as the Z group was higher than that with 2-naphthyl as the Z group, and it decreased significantly when using 4-cycno phenyl as the Z group. Retardation effects were observed with all the RAFT agents. 1H NMR spectra and chain extension results confirmed that most of the polymer chains were “living”. Ultraviolet (UV) absorption of naphthyl moieties at the R group showed blue shifts compared with those of naphthyl at the Z group. The UV absorption intensity of PS was uniformly lower than that of the corresponding RAFT agent, while the fluorescence intensity of PS was higher than that of the corresponding RAFT agent. 相似文献
8.
Low polydispersity polydimethylsiloxane (PDMS) was end functionalized with a reversible addition fragmentation chain transfer (RAFT) agent by the esterification of hydroxyl terminated PDMS with a carboxylic acid functional RAFT agent. These PDMS‐RAFT agents were able to control the free radical polymerization of styrene and substituted styrene monomers to produce PDMS‐containing block copolymers with low polydispersities and targeted molecular weights. A thin film of polydimethylsiloxane‐block‐polystyrene was prepared by spin coating and exhibited a microphase separated morphology from scanning force microscopy measurements. Controlled swelling of these films in solvent vapor produced morphologies with significant long‐range order. This synthetic route will allow the straightforward production of PDMS‐containing block copolymer libraries that will be useful for investigating their thin film morphological behavior, which has applications in the templating of nanostructured materials.© 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
9.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization was used successfully to synthesize temperature‐responsive poly(N‐isopropylacrylamide) (PNIPAAm), poly(methacrylic acid) (PMAA), and their temperature‐responsive block copolymers. Detailed RAFT polymerization kinetics of the homopolymers was studied. PNIPAAm and PMAA homopolymerization showed living characteristics that include a linear relationship between M n and conversion, controlled molecular weights, and relatively narrow molecular weight distribution (PDI < 1.3). Furthermore, the homopolymers can be reactivated to produce block copolymers. The RAFT agent, carboxymethyl dithiobenzoate (CMDB), proved to control molecular weight and PDI. As the RAFT agent concentration increases, molecular weight and PDI decreased. However, CMDB showed evidence of having a relatively low chain transfer constant as well as degradation during polymerization. Solution of the block copolymers in phosphate buffered saline displayed temperature reversible characteristics at a lower critical solution temperature (LCST) transition of 31°C. A 5 wt % solution of the block copolymers form thermoreversible gels by a self‐assembly mechanism above the LCST. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1191–1201, 2006 相似文献
10.
以三硫代碳酸二(α, α'-二甲基-α-乙酸)酯(BDATC)为链转移剂, 以苯乙烯、马来酸酐、丙烯酸为原料, 通过可逆加成-断裂链转移(RAFT)合成了双亲嵌段共聚物PSt-b-P(St-alt-MA)-b-PAA。通过选择性溶剂N, N-二甲基甲酰胺(DMF)诱导聚合物进行自组装, 利用紫外-可见光光度仪、纳米激光粒度仪详细研究了共聚物中亲疏水嵌段长度、初始浓度、体系pH值对聚合物自组装行为的影响。通过化学交联的方法制备得到了聚合物交联胶束, 利用透射电镜表征了形貌与尺寸, 研究明确了其形状和尺寸的稳定性。结果表明, 上述因素均会影响共聚物的自组装行为和自组装胶束的形态, 经乙二胺交联得到的交联自组装胶束平均粒径为145.4nm, 并具有良好的形状和尺寸稳定性。 相似文献
11.
The validity of simplifying the reversible addition‐fragmentation chain transfer (RAFT) polymerization as a degenerative chain transfer process was verified in this work. The simplified chain transfer mechanism enabled the direct modeling investigation of chain transfer coefficient in the RAFT polymerization. It also gave the analytical expressions for concentration, chain length, and polydispersity of various chain species. The comparison between the simulations based on chain transfer mechanism and those from general RAFT mechanism showed that this simplified mechanism can accurately predict RAFT polymerization in the absence of side reactions to adduct radicals other than fragmentation. However, significant errors are introduced at high conversion when side reactions to adduct are present. The chain transfer coefficient of RAFT agent is the key factor in RAFT polymerization. The polydispersity is more sensitive to chain transfer coefficient at low conversion. At high conversion, however, the polydispersity is mainly determined by termination, which can be controlled by RAFT agent concentration and the selection of initiator. At last, an analytical equation is derived to directly estimate chain transfer coefficient of RAFT agent from the experimental data. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011. 相似文献
12.
Two polyisoprene‐block‐poly(tert‐butyl acrylate) (PI‐b‐PtBA) samples and a poly(tert‐butyl acrylate) (PtBA) homopolymer (hPtBA) were prepared by anionic polymerization and characterized by light scattering, size exclusion chromatography, and NMR. The tert‐butyl groups were removed from one of the diblocks to yield amphiphilic polyisoprene‐block‐poly(acrylic acid) (PI‐b‐PAA). PI‐b‐PAA was then used as the surfactant to disperse dichloromethane containing PI‐b‐PtBA and hPtBA at different weight ratios as oil droplets in water. Solid microspheres containing segregated polyisoprene (PI) and PtBA/hPtBA domains were obtained after dichloromethane evaporation. Permanent microspheres were obtained after PI domain crosslinking with sulfur monochloride. Porous microspheres were produced after the hydrolysis of PtBA and the extraction of the homopoly(acrylic acid) chains. The shape and connectivity of the poly(acrylic acid)‐lined pores were tuned by changes in the PtBA/hPtBA content in the precursor microspheres. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2785–2793, 2003 相似文献
13.
A series of amphiphilic poly(N‐vinyl carbazole) (PVK) block copolymers containing tris(8‐hydroxyquinoline) aluminum (Alq3) have been synthesized via reversible addition‐fragmentation chain transfer (RAFT) radical polymerization with trithiocarbonate terminated polyethylene glycol (PEG) as a RAFT agent. The chemical structures of the block copolymers have been identified by 1H nuclear magnetic resonance and Fourier transform infrared spectrometer. The analysis of gel permeation chromatography indicates that the polydispersity indices of the block copolymers are lower than 1.30. The results of thermogravimetric analysis show that the decomposition temperatures of the copolymers are higher than 330 °C. The optical properties of the copolymers have been investigated and the obviously enhanced emission from Alq3 has been found due to resonance energy transfer from PVK to Alq3. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44573. 相似文献
14.
Biodegradable, amphiphilic, linear (diblock and triblock) and star‐shaped (three‐armed and four‐armed) poly[(ethylene glycol)‐block‐(ε‐caprolactone)] copolymers (PEG–PCL copolymers) were synthesized by ring‐opening polymerization of ε‐caprolactone (CL) with stannous octoate as a catalyst, in the presence of monomethoxypoly(ethylene glycol) (MPEG), poly(ethylene glycol) (PEG), three‐armed poly(ethylene glycol) (3‐arm PEG) or four‐armed poly(ethylene glycol) (4‐arm PEG) as an initiator, respectively. The monomer‐to‐initiator ratio was varied to obtain copolymers with various PEG weight fractions in a range 66–86%. The molecular structure and crystallinity of the copolymers, and their aggregation behavior in the aqueous phase, were investigated by employing 1H‐NMR spectroscopy, gel permeation chromatography and differential scanning calorimetry, as well as utilizing the observational data of gel–sol transitions and aggregates in aqueous solutions. The aggregates of the PEG–PCL block copolymers were prepared by directly dissolving them in water or by employing precipitation/solvent evaporation technique. The enthalpy of fusion (ΔHm), enthalpy of crystallization (ΔHcrys) and degrees of crystallinity (χc) of PEG blocks in copolymers and the copolymer aggregates in aqueous solutions were influenced by their PEG weight fractions and molecular architecture. The gel–sol transition properties of the PEG–PCL block copolymers were related to their concentrations, composition and molecular architecture. Copyright © 2006 Society of Chemical Industry 相似文献
15.
首先介绍了可逆加成-断裂链转移聚合(RAFT)的聚合机理及其常用的RAFT试剂,并与其它两种活性可控自由基聚合[氮氧化合物媒介的自由基聚合(NMP)和原子转移自由基聚合(ATRP)]进行了简单的优缺点对比。其次,介绍了近些年在基于RAFT聚合制备功能化聚烯烃嵌段聚合物研究中取得的进展,重点综述了制备功能化聚烯烃嵌段聚合物时所采用的6种方法,包括①烯烃配位聚合与RAFT聚合相结合;②阴离子聚合与RAFT聚合相结合;③阳离子聚合与RAFT聚合相结合;④Click反应与RAFT聚合相结合;⑤开环聚合与RAFT聚合相结合;⑥叶立德活性聚合与RAFT聚合相结合。最后,对基于RAFT聚合策略设计合成功能化聚烯烃嵌段聚合物的研究前景与实际应用进行了展望。 相似文献
16.
《大分子材料与工程》2017,302(6)
When employing polyfunctional reversible addition–fragmentation chain transfer (RAFT) agents (e.g., polytrithiocarbonates) in a reversible‐deactivation radical polymerization, a redistribution of the RAFT groups being connected to polymer segments occurs, which leads to a characteristic distribution of blocks in the polymer. The authors show that by adding bifunctional RAFT agents to such a system, the average number of blocks and their distribution may be tailored, proving that in principle any RAFT agent may be combined with a polyfunctional RAFT agent to tailor its topology. The authors thus add star‐shaped RAFT agents and develop multiblock copolymers of styrene and n‐butyl acrylate having incorporated star‐shaped topological features and investigate the materials via tensile testing. Using this novel mixing approach, the material toughness is substantially increased compared to multiblock copolymers obtained from pure polyfunctional RAFT agent, and stress whitening is prevented. Importantly, the approach yields copolymers with a significantly higher toughness compared to conventional blends of star and multiblock copolymers.
17.
Poly(ethylene glycol)‐block‐poly(N‐isopropylacrylamide) (PEG‐b‐PNIPAM) block copolymers were synthesized by atom transfer radical polymerization, and the α‐cyclodextrin (α‐CD) induced self‐assembly characteristics of the system were elucidated. Below the lower critical solution temperature (LCST) of PNIPAM, CD threaded onto the PEG segments and induced micellization to form rod‐shaped nanostructures comprising of a PEG/α‐CD condensed phase and a PNIPAM shell. Increasing the temperature of system above the LCST caused the PNIPAM segments to collapse, which resulted in the dethreading of the CD. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
18.
5,10,15,20‐tetra(4‐hydroxyphenyl)porphyrin (THPP) was synthesized by the condensation of pyrrole with 4‐hydroxybenzaldehyde in the presence of solvent (propionic acid). Subsequently, the resulting THPP was converted to a tetrafunctional star‐shaped macroinitiator (porphyrin‐Br4) by esterification of it with 2‐bromopropanoyl bromide, and then atom transfer radical polymerization (ATRP) of styrene was conducted at 110°C with CuCl/2,2′‐bipyridine as the catalyst system. The resulting product was reacted with NBS to obtain star‐shaped initiator porphyrin‐(PSt‐Br)4, which was used the following ATRP of the GMA to synthesize star–comb‐shaped grafted polymer porphyrin‐(PSt‐g‐PGMA)4. The number molecular weight was 2.3 × 104 g/mol, and the dispersity was narrow (Mw/Mn = 1.32). The structure of the polymers was investigated by NMR, UV–vis, IR, and GPC measurement. The self‐assembly behavior of the polymer porphyrin‐(PSt‐g‐PGMA)4 was studied by DLS and AFM. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
19.
A new ionic crosslinked polymer hydrogel was achieved by the strategy of ionically crosslinking α,ω‐dibromide terminated polystyrene (Br‐PS‐Br) with poly(4‐vinyl pyridine) (P4VP) which was synthesized by reversible addition‐fragmentation chain transfer polymerization using a chain transfer agent containing a trithiocarbonate moiety. The moiety of trithiocarbonate was introduced into the crosslinked network to show the self‐healing characteristics. The chain structure and components of Br‐PS‐Br and P4VP were characterized through 1H NMR, gel permeation chromatography, Fourier transform IR spectroscopy and elemental analysis. The P4VP (Mn = 25 300 g mol?1) chains were crosslinked with Br‐PS‐Br (Mn = 2000 g mol?1) through the quaternization reaction to form a polymer network which was further crosslinked in acetonitrile by irradiation of UV light to fabricate a hydrogel. Such a hydrogel of P4VP/Br‐PS‐Br cut by a razor blade can be rapidly (1 h) and repeatedly (three times) healed through a reshuffling reaction of the trithiocarbonate moiety under irradiation by UV light. © 2018 Society of Chemical Industry 相似文献
20.
Diblock copolymer poly(methyl methacrylate)‐b‐poly(vinyl acetate) (PMMA‐b‐PVAc) was prepared by 1,1‐diphenylethene (DPE) method. First, free‐radical polymerization of methyl methacrylate was carried out with AIBN as initiator in the presence of DPE, giving a DPE containing PMMA precursor with controlled molecular weight. Second, vinyl acetate was polymerized in the presence of the PMMA precursor and AIBN, and PMMA‐b‐PVAc diblock copolymer with controlled molecular weight was obtained. The formation of PMMA‐b‐PVAc was confirmed by 1H NMR spectrum. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to detect the self‐assembly behavior of the diblock polymer in methanol. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献