首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pickering emulsion polymerization has attracted considerable attention in material fabrication due to its unique surfactant-free character and versatile association of oil, water and particles for a large set of materials. In this study, SiO2 modified with Methacryloxypropyltrimethoxysilane (MPTMS) was employed to prepare Pickering emulsion, and subsequently covalently-bonded polystyrene/SiO2(PS/SiO2) composites were synthesized by Oil-in-water Pickering emulsion polymerization. Optical micrograph, contact angle, thermogravimetric analysis (TGA), Fourier transform infrared spectra (FT-IR), scanning electron microscope (SEM) and dynamic laser scattering (DLS) were employed to characterize the modified SiO2, Pickering emulsion and prepared composites. It was found that prepared composites possess ragged surface morphology and SiO2 concentration has an important effect on the morphology of as-prepared composites. In addition, covalent bond between PS core and SiO2 shell was evidenced by FT-IR.  相似文献   

2.
A facile and novel strategy was reported on the fabrication of raspberry‐like SiO2/polystyrene (SiO2/PS) composite particles by emulsion polymerization in the presence of vinyl‐functionalized silica (vinyl‐SiO2) particles, which were prepared via a one‐step sol–gel process using vinyltriethoxysilane as the precursor. The submicron vinyl‐SiO2 particles were used as the core, and nanosized PS particles were then adsorbed onto the vinyl‐SiO2 particles to form raspberry‐like composite particles during the polymerization process. The composition, morphology, and structure of the vinyl‐SiO2 particles and the SiO2/PS hybrid particles were characterized by thermogravimetric analysis, nuclear magnetic resonance, Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy. Superhydrophobic surface can be constructed by directly depositing the raspberry‐like SiO2/PS composite particles on glass substrate, and the water contact angle can be adjusted by the styrene/SiO2 weight ratio. In addition, the superhydrophobic film possessed a strong adhesive force to pin water droplet on the surface even when the film was turned upside down. POLYM. COMPOS., 2013. © 2012 Society of Plastics Engineers  相似文献   

3.
A styrene‐acrylic/SiO2 nanoparticle composite emulsion was prepared by using SiO2 nanoparticles as seeds. The effect of factors such as the level of nano‐SiO2, reaction temperature and ultrasound treatment of nano‐SiO2 on the stability of the polymerization reaction was investigated. Water‐resistance of the emulsion was measured. The level of nano‐SiO2 in the emulsion was determined by inductively coupled plasma (ICP) spectrometry. The particle morphology of the emulsion with nano‐SiO2 was observed with transmission electron microscopy (TEM). The kinetics of the polymerization was also studied at various temperatures and various levels of nano‐SiO2. They showed that the level of nano‐SiO2 and reaction temperature had a great influence on the monomer conversion, particle size, coagulum content and viscosity of the emulsion. Nano‐SiO2 treated by ultrasonics can increase the coagulum content greatly, but it does not improve the water resistance of the emulsion. The level of nano‐SiO2 in the emulsion was lower than the theoretical value. The reaction kinetics indicated that the level of nano‐SiO2 had less influence on the reaction rate than the reaction temperature. Even a small amount of nano‐SiO2 can decrease the reaction rate. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
Pickering emulsion technique has been demonstrated a simple method to fabricate the microcapsules. However, the resulted microcapsules are often fragile. This limits their applications. Here, we report that the microcapsules with the nanostructured shell of poly(acrylic acid‐b‐styrene‐b‐isoprene‐b‐styrene) (ASIS), which is of high toughness and elasticity, could be fabricated via Pickering emulsions using ASIS nanoparticles as stabilizing particles. The surfactant‐free ASIS latex (with theoretical molecular weight for each block: 1.5k–15k–55k–10k) was synthesized by reversible additional fragmentation transfer (RAFT) emulsion polymerization using amphiphilic macro‐RAFT agent [poly(acrylic acid)20b‐polystyrene5 trithiocarbonate] as both reactive surfactant and polymerization mediator. It was found that the ASIS nanoparticles were able to self‐assemble on oil/water interface to stabilize Pickering emulsion of hexadecane in the pH range from 8 to 12. The droplet diameter was finely tuned from 17 to 5 µm by increasing the ASIS particle levels from 0.13 to 12 wt % based on the mass of the ASIS aqueous dispersions. With toluene as a coalescing aid, the capsules with a coherent and nonporous shell were obtained with the dispersed phase volume percentage as high as 50%. The toluene treated capsules were so mechanically strong to survive the utrasonic treatment. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46700.  相似文献   

5.
Poly(methy methacrylate) (PMMA)‐SiO2 nanoparticles were prepared via differential microemulsion polymerization. The effects of silica loading, surfactant concentration, and initiator concentration on monomer conversion, particle size, particle size distribution, grafting efficiency, and silica encapsulation efficiency were investigated. A high monomer conversion of 99.9% and PMMA‐SiO2 nanoparticles with a size range of 30 to 50 nm were obtained at a low surfactant concentration of 5.34 wt% based on monomer. PMMA‐SiO2 nanoparticles showed spherical particles with a core‐shell morphology by TEM micrographs. A nanocomposite membrane from natural rubber (NR) and PMMA‐SiO2 emulsion was studied for mechanical and thermal properties and pervaporation of water‐ethanol mixtures. PMMA‐SiO2 nanoparticles which were uniformly dispersed in NR matrix, significantly enhanced mechanical properties and showed high water selectivity in permeate flux. Thus, the NR/PMMA‐SiO2 hybrid membranes have great potential for pervaporation process in membrane applications. POLYM. ENG. SCI., 2017. © 2017 Society of Plastics Engineers  相似文献   

6.
Both silica/polystyrene (SiO2/PS) and silica/polystyrene‐b‐polymethacryloxypropyltrimethoxysilane (SiO2/PS‐b‐PMPTS) hybrid nanoparticles were synthesized via surface‐initiated atom transfer radical polymerization (SI‐ATRP) from SiO2 nanoparticles. The growths of all polymers via ATRP from the SiO2 surfaces were well controlled as demonstrated by the macromolecular characteristics of the grafted chains. Their wettabilities were measured and compared by water contact angle (WCA) and surface roughness. The results show that the nanoparticles possess hydrophobic surface properties. The static WCA of SiO2/PS‐b‐PMPTS hybrid nanoparticles is smaller than that of SiO2/PS hybrid nanoparticles, meanwhile, the surface roughness of SiO2/PS‐b‐PMPTS hybrid nanoparticles is yet slightly rougher than that of SiO2/PS hybrid nanoparticles, which shows that the combination and competition of surface chemistry and roughness of a solid material can finally determine its wettability. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

7.
The nano‐SiO2 particles modified by silane coupling agent A‐1100 were used for preparing the vinyl ester resin (VE) Pickering emulsion. The stable emulsion could be served as the film former of sizing agent for glass fiber (GF). The influence of the wettability and the addition amount of nano‐SiO2 on the stability of film former emulsion was explored. The effect of nano‐SiO2 Pickering emulsion type sizing agent on the properties of GF was investigated. SEM images show that there existed a layer of sizing agent film with nano‐SiO2 particles evenly on the GF surface. The abrasion resistance of the sized GF reached 3,579 times and the stiffness was 69 mm. The strand integrity also performed well. The fracture strength of GF bundles treated by Pickering emulsion type sizing agent increased by 28.6% to 0.504 N/Tex compared with that of the unsized GF bundles. The interlaminar shear strength (ILSS) of GF/VE composites sized by self‐made sizing agent which contained nano‐SiO2 has improved, compared to the unsized GF reinforced VE composite. POLYM. COMPOS., 37:334–341, 2016. © 2014 Society of Plastics Engineers  相似文献   

8.
Copper‐encapsulated polystyrene nanocomposite particles were prepared through ex situ dispersion of Cu nanoparticles into monomer droplets and subsequent polymerization using water in supercritical carbon dioxide (water‐in‐sc‐CO2) at 70°C. First, colloidal dispersion of copper nanoparticles was synthesized by chemical reduction of copper chloride (CuCl2) using sodium borohydrate (NaBH4) as reducing agent. Colloidal dispersion of copper nanoparticles was added slowly during the polymerization of styrene using water‐in‐sc‐CO2 medium at 70°C and 20.68 MPa. Cu nanoparticle encapsulated polymer particles were characterized by UV, X‐ray diffraction, thermogravimetric analysis, SEM, and TEM. Cu nanoparticles were uniformly distributed inside the polymer matrix during the polymerization process. This work represents a simple way to prepare a variety of metal nanoparticles encapsulated polymer particles using water‐in‐sc‐CO2 medium. The Cu/polystyrene nanocomposite particles exhibit antimicrobial activity against a number of bacteria. The current work represents a simple, cheap and universal way to prepare a variety of metal–polymer nanocomposite materials. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
In this study, the cinnamon oil (CMO)‐loaded antibacterial composite microcapsules with silicon dioxide (SiO2)/poly(melamine formaldehyde) (PMF) hybrid shells are effectively and facilely constructed by in situ polymerization of SiO2 nanoparticle–stabilized Pickering emulsion templates. The morphological structure, composition, and thermal performance of the microcapsules are determined by scanning electronic microscopy, Fourier transform infrared spectroscopy, and thermal gravimetric analysis. In addition, in vitro CMO release and antimicrobial investigations of the microcapsules are also performed, respectively. The results demonstrate that the microcapsules own an approximately spherical shape with a core–shell structure. Moreover, the micro‐encapsulation of CMO clearly increases its thermal stability, and meanwhile results in obtaining microcapsules with the controlled CMO release and visibly long‐term antimicrobial effects. All the results show that in situ polymerization based on templating Pickering emulsions is an attractive method to construct antibacterial essential oil–loaded microcapsules, which can be served as promising antibacterial materials.  相似文献   

10.
Pentaerythritol (PT) was converted into four‐arm initiator pentaerythritol tetrakis(2‐chloropropionyl) (PT‐Cl) via reaction with 2‐chloropropionyl chloride. Uniform (monodisperse) star‐polystyrene nanoparticles were prepared by emulsion atom transfer radical polymerization of styrene, using PT‐Cl/CuCl/bpy (bpy is 2,2′‐dipyridyl) as the initiating system. The structures of PT‐Cl and polymer were characterized by Fourier transform infrared spectroscopy and nuclear magnetic resonance. The morphology, size and size distribution of the star‐polystyrene nanoparticles were characterized by transmission electron microscopy, atomic force microscopy and photon correlation spectroscopy. It was found that the average diameters of star‐polystyrene nanoparticles were smaller than 100 nm (30–90 nm) and monodisperse; moreover, the particle size could be controlled by the monomer/initiator ratio and the surfactant concentration. The average hydrodynamic diameter (Dh) of the nanoparticles increased gradually on increasing the ratio of styrene to PT‐Cl and decreased on enhancing the surfactant concentration or increasing the catalyst concentration. Copyright © 2011 Society of Chemical Industry  相似文献   

11.
Air‐stable Fe magnetic nanoparticles entrapped within carbon and porous crosslinked polystyrene microspheres of narrow size distribution were prepared by the following sequential steps: (1) Polystyrene/poly(divinyl benzene) and polystyrene/poly(styrene‐divinyl benzene) uniform micrometer‐sized composite particles were prepared by a single‐step swelling of uniform polystyrene template microspheres dispersed in an aqueous continuous phase with emulsion droplets of dibutyl phthalate containing the monomers divinyl benzene and styrene and the initiator benzoyl peroxide. The monomers within the swollen polystyrene template microspheres were then polymerized by raising the temperature to 73°C; (2) Porous poly (divinyl benzene) and poly(styrene‐divinyl benzene) uniform crosslinked microspheres were prepared by dissolution of the polystyrene template part of the former composite particles; (3) Uniform magnetic poly(divinyl benzene)/Fe and poly(styrene‐divinyl benzene)/Fe composite microspheres were prepared by entrapping Fe(CO)5 within the porous crosslinked microspheres, by suction of the Fe complex into the dried porous particles, followed by decomposition of the encapsulated Fe(CO)5 at 200°C in Ar atmosphere; (4) Uniform magnetic air‐stable C/Fe composite microspheres were prepared similarly, apart from changing the decomposition temperature from 200 to 600°C. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
In this article, we describe a novel redox interfacial‐initiated micro‐emulsion polymerization (RIEP) to prepare hollow polystyrene microspheres with magnetite nanoparticles (MPs) core and polystyrene (PS) shell (MPs‐PS) under ambient pressure. The emulsion was constituted water‐based magnetic ferro‐fluid as dispersing phase and organic solvent and styrene (St) as continuous phase. Cumene hydroperoxide (CHPO)/iron (II) sulfates (FS) as the redox initiation system, the water‐soluble FS acted as the reducing component and the oil‐soluble CHPO as the oxidant component of the redox initiation system. Therefore, the primary radicals are produced mainly at the oil/water interface to initiate the polymerization of styrene to form polymer shell. The final products thoroughly characterized by X‐ray powder diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, field‐emission scanning electron microscopy, thermogravimetric analysis, dynamic light scattering, and X‐ray photoelectron spectroscopy, which showed the formation of hollow magnetite/polystyrene nanocomposite microspheres. Magnetic measurements were carried out at room temperature using a vibrating sample magnetometer. The saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) is 30 emu/g, 15 emu/g and 370 Oe, respectively. The results revealed that the hybrid materials microspheres were super‐paramagnetic. POLYM. COMPOS., 31:1846–1852, 2010. © 2010 Society of Plastics Engineers  相似文献   

13.
A polystyrene (PS)/poly(butyl acrylate) (PBA) composite emulsion was produced by seeded emulsion polymerization of butyl acrylate (BA) with PS seed particles which were prepared by emulsifier‐free polymerization of styrene with potassium persulfate (KPS) under a nitrogen atmosphere at 70°C for 24 h with stirring at 60 rpm and swelled with the BA monomer in an ethanol/water medium. The structure of the PS/PBA composite particles was confirmed by the presence of the characteristic absorption band attributed to PS and PBA from FTIR spectra. The particles for pure PS and PS/PBA with a low content of the BA monomer were almost spherical and regular. As the BA monomer content was increased, the particle size of the PS/PBA composite particles became larger, and more golf ball‐like particles were produced. The surface morphology of the PS/PBA composite particles was investigated by AFM and SEM. The Tg's attributed to PS and PBA in the PS/PBA composite particles were found at 110 and ?49°C, respectively. The thermal degradation of the pure PS and PS/PBA composite particles occurred in one and two steps, respectively. With an increasing amount of PBA, the initial thermal decomposition temperature increased. On the contrary the residual weight at 450°C decreased with an increasing amount of PBA. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 595–601, 2003  相似文献   

14.
Fe3O4 nanoparticles were modified by n-octadecyltrimethoxysilane (C18TMS) and 3-trimethoxysilylpropylmethacrylate (MPS). The modified Fe3O4 nanoparticles were used to prepare Fe3O4/polystyrene composite particles by miniemulsion polymerization. The effect of surface modification of Fe3O4 on the preparation of Fe3O4/polystyrene composite particles was investigated by transmission electron microscopy, Fourier transform infrared spectrophotometer (FT-IR), contact angle, and vibrating sample magnetometer (VSM). It was found that C18TMS modified Fe3O4 nanoparticles with high hydrophobic property lead to the negative effect on the preparation of the Fe3O4/polystyrene composite particles. The obtained composite particles exhibited asymmetric phase-separated structure and wide size distribution. Furthermore, un-encapsulated Fe3O4 were found in composite particles solution. MPS modified Fe3O4 nanoparticles showed poor hydrophobic properties and resulted in the obtained Fe3O4/polystyrene composite particles with regular morphology and narrow size distribution because the ended C=C of MPS on the surface of Fe3O4 nanoparticles could copolymerize with styrene which weakened the phase separation distinctly.  相似文献   

15.
Jauder Jeng  Chia-Fen Lee  Wen-Yen Chiu 《Polymer》2008,49(15):3265-3271
A Pickering emulsion polymerization of aniline, using different hydrophilicities of oil phases, was stabilized by ZnO nanoparticles and performed to synthesize composite latex particles of polyaniline/ZnO. Ammonium peroxydisulfate (APS) was used as an oxidizing agent. The morphologies and growth mechanisms of the resulted composite latex particles were studied. The pH-regulation capacity of the composite latex particles was discussed. When toluene was used as the oil phase, the composite latex particles showed hollow structure, irregular morphology, and hundreds of nanometer in size. It was ascribed to the polymerization of aniline on the interfaces of droplets/water. ZnO nanoparticles, with 50-100 nm in size, acted as surfactants to stabilize the emulsion. When THF was used as an oil phase, the composite latex particles showed spherical morphology and enwrapping ZnO nanoparticles. It was attributed to the homogeneous nucleation of polyaniline in the aqueous phase. ZnO nanoparticles acted as templates for the polyaniline particles. The stability of the Pickering emulsion polymerization was affected by the volume ratio of the oil phase to water. The aqueous solution with pH 3-9 could simply be regulated to about pH 7 by the composite latex particles. It was contributed by the dissolution of ZnO nanoparticles and doping-dedoping of polyaniline in the acidic and alkaline aqueous solutions.  相似文献   

16.
Hollow polymer particles with large voids were prepared with styrene (St) as the main component and in the presence of a small amount of N,N′‐dimethylaminoethyl methacrylate (DMAEMA) via a glass‐membrane emulsification technique and a subsequent suspension polymerization. A mixture of the monomer, hexadecane (HD), and N,N′‐azobis(2,4‐dimethylvaleronitrile) as an initiator was used as a dispersed phase (oil phase). By the careful pushing of the dispersed phase through the pores of the glass membrane into the aqueous phase, an emulsion of fairly monodisperse monomer droplets was formed. Then, the polymerization was performed by temperature being elevated to 70°C. The aqueous phase (continuous phase) contained poly(N‐vinyl pyrrolidone) as a stabilizer, sodium lauryl sulfate as a surfactant, Na2SO4 as an electrolyte, and sodium nitrite (NaNO2) as a water‐soluble inhibitor. Results related to the effects of the HD content, DMAEMA, and the composition of the comonomer, including the crosslinker and flexible segment, on the features of the hollow particles were investigated. When the content of DMAEMA was higher than 1.0 wt % based on the total monomer, small, secondary particles were generated in the aqueous phase, but the generation was effectively prevented when DMAEMA was limited to 0.5 wt %. Hollow particles, with an average diameter of around 7 μm, were obtained with an St–DMAEMA system. The void size of the hollow particles was controlled by the HD content. When the HD content was lower (<25 wt % based on the oil phase), unbroken hollow particles were easily obtained. However, they tended to break into halves after drying when the HD content was increased to 50 wt %. A soft segment, lauryl acrylate, and a crosslinker, ethylene glycol dimethacrylate, were added to overcome this problem. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 244–251, 2003  相似文献   

17.
Composite polymer particles with hydrophobic polystyrene (PSt) as the core and hydrophilic poly(methacrylic acid) (PMAA) as the shell were prepared through two‐stage emulsion polymerization without any surfactant. In the first step, narrowly distributed PSt seed particles were prepared by surfactant‐free emulsion polymerization with 2,2′‐azobis(2‐methylpropionamide) dihydrochloride (AMPA) as the initiator. In the second step, hydrophilic PMAA shells were fabricated onto PSt seed particles through redox interfacial‐initiated seeded emulsion polymerization with cumyl hydroperoxide (CHPO)/ferrous sulfate/ethylenediaminetetraacetic acid (EDTA)/sodium formaldehydesulfoxylate (SFS), where the initiation took place mainly at the interface between PSt seed particles and the aqueous medium. The composite particles were characterized with transmission electron microscopy, fourier transform infrared spectroscopy and dynamic light scattering, and the results show that a core/shell structure was successfully built. Hydrodynamic radius (Rh) of the composite particles increased with the amount of polymerized monomers in the seeded emulsion polymerization. Copyright © 2006 Society of Chemical Industry  相似文献   

18.
2,2,6,6‐Tetramethylpiperidine‐1‐oxyl (TEMPO)‐mediated living mini‐emulsion polymerization of styrene with feeding of an ascorbic acid aqueous solution throughout the polymerization was performed at 90 °C under ambient pressure. The concentrations of sodium dodecylbenzenesulfonate (SDBS) and ascorbic acid were varied to study the shell polymerization mechanism of latex particles and evolution of growing chains. Interactions between SDBS and ascorbic acid and incompatibility between ascorbic acid and styrene were evident from UV‐visible analyses. High hydrophilicity of ascorbic acid in the aqueous phase was proved using a gravimetric method. Accordingly, the formation of a surface barrier on particles was proposed because of the interactions between SDBS and ascorbic acid. For higher SDBS concentration, the surface barrier on the particles was denser. Therefore, the polymerization rate decreased with increasing SDBS concentration. However, the polymerization rate increased with increasing ascorbic acid concentration. This was due to a higher consumption rate of TEMPO by ascorbic acid. Free TEMPO tended to reside in surface zones of the particles because of the surface activity between the aqueous and oil phases. The surface zones were thus the main loci where TEMPO was consumed by ascorbic acid. The estimated number‐average molecular weight (Mn) of growing chains increased in a linear fashion with conversion. This indicated that the growing chains were produced via living mini‐emulsion polymerization. For these growing chains, the estimated Mn and final polydispersity increased with increasing SDBS concentration. This was caused by a decrease in TEMPO concentration in the surface zones of particles with increasing SDBS concentration. The ‘livingness’ of polystyrene was identified by conducting bulk polymerization of chain extension. Based on the results obtained, a shell polymerization mechanism of latex particles was proposed, and living mini‐emulsion polymerization was limited to the surface zones of particles. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
A novel method of nano‐SiO2/poly(methyl methacrylate)(PMMA)‐polyurethane(PU) composite particles modifying epoxy resin is reported. The composite particles with the obvious core‐shell structure were prepared by emulsion polymerization of PMMA and PU prepolymer on the surface of nano‐SiO2. The diameter of the composite particles was 50–100 nm with dark core SiO2 (30–60 nm) and light shell polymer of PMMA and PU (20–30 nm); moreover, PU was well distributed in PMMA with about 10 nm diameter. After nano‐SiO2 was encapsulated by PMMA and PU, the Si content on the surface decreased rapidly to 2.08% and the N content introduced by PU was about 1.27%. The ratio of polymer to original nano‐SiO2 (fp), the grafting ratio of polymer to original nano‐SiO2 (fr) and the efficiency grafting ratio of polymer (fe) were, respectively, about 116.7%, 104.4%, and 89.5%. The as‐prepared composite particles were an effective toughness agent to modify epoxy resin, and the impact strength of the modified epoxy resin increased to 46.64 kJ m?2 from 19.12 kJ m?2 of the neat epoxy resin. This research may enrich the field of inorganic nanoparticles with important advances toward the modification for polymer composite materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41919.  相似文献   

20.
Silica (SiO2)‐crosslinked polystyrene (PS) particles possessing photofunctional N,N‐diethyldithiocarbamate (DC) groups on their surface were prepared by the free‐radical emulsion copolymerization of a mixture of SiO2 (diameter Dn = 192 nm), styrene, divinyl benzene, 4‐vinylbenzyl N,N‐diethyldithiocarbamate (VBDC), and 2‐hydroxyethyl methacrylate with a radical initiator under UV irradiation. In this copolymerization, the inimer VBDC had the formation of a hyperbranched structure by a living radical mechanism. These particles had DC groups on their surface. Subsequently, poly(methyl methacrylate) brushes encapsulated SiO2 particles were synthesized by the grafting from a photoinduced atom transfer radical polymerization (ATRP) approach of methyl methacrylate initiated by SiO2‐crosslinked PS particles as a macroinitiator. We constructed the colloidal crystals using these photofunctional particles. Moreover, the SiO2 particle array of colloidal crystals was locked by radical photopolymerization with vinyl monomer as a matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号