首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the modern world, only conventional energy resources cannot fulfil the growing energy demand. Electricity is a fundamental building block of a technological revolution. Today, most of the electricity demand is met by the burning of fossil fuels but at the cost of adverse environmental impact. In order to bridge the gap between electricity demand and supply, nonconventional and eco-friendly means of energy generation are considered. Renewable energy systems (RESs) offer an adequate solution to mitigate the challenges originated due to greenhouse gasses (GHG). However, they have an unpredictable power generation with specific site requirements. Grid integration of RESs may lead to new challenges related to power quality, reliability, power system stability, harmonics, subsynchronous oscillations (SSOs), power quality, and reactive power compensation. The integration with energy storage systems (ESSs) can reduce these complexities that arise due to the intermittent nature of RESs. In this paper, a comprehensive review of renewable energy sources has been presented. Application of ESSs in RESs and their development phase has been discussed. Role of ESSs in increasing lifetime, efficiency, and energy density of power system having RESs has been reviewed. Moreover, different techniques to solve the critical issues like low efficiency, harmonics, and inertia reduction in photovoltaic (PV) systems have been presented. Unlike most of the available review papers, this article also investigates the impact of FACTS technology in RESs-based power system using multitype flexible AC transmission system (FACTS) controllers. Three simulation models have been developed in MATLAB/Simulink. The results show that FACTS devices help to maintain the stability of RESs integrated power system. This review paper is believed to be of potential benefit for researchers from both the industry and academia to develop better understanding of challenges and solution techniques for REs-based power systems and future research dimensions in this area.  相似文献   

2.
Renewable resources, especially wind power, are widely integrated into the power systems nowadays. Managing uncertainty of the large scale wind power is often known as one of the most challenging issues in the power system operation scheduling. Additionally, energy storage systems (ESSs) have been widely investigated in the power systems owing to their valuable applications, especially renewable energy smoothing and time shift. In this paper, a stochastic unit commitment (UC) model is proposed to assess the impact of the wind uncertainty impact on ESSs and thermal units schedule in UC problem. Wind uncertainty is modeled based on the two measures. First, the wind penetration level is changed with respect to the basic level. Second, the wind forecasting error is modeled through a normal probability distribution function with different variances. The ESSs are modeled based on several technical characteristics and optimally scheduled considering different levels of the wind penetration and forecasting accuracies. The proposed formulation is a stochastic mixed integer linear programming (SMILP) and solved using GAMS software. Simulation results demonstrate that the wind uncertainty have a considerable impact on operation cost and ESSs schedule while proposed optimum storage scheduling through the stochastic programming will reduce the daily operational cost considerably.  相似文献   

3.
This paper addresses a multistage electricity generation expansion planning (GEP) incorporating large-scale energy storage systems (ESSs). The proposed coordinated GEP-ESS planning aims at minimizing the planning cost and environmental pollution at the same time, while it considers large-scale ESSs. Problem is expressed as a mixed-integer nonlinear programming and solved using PSO algorithm. Problem is solved subject to practical constraints of the network. ESS capacities are installed to support peak load level and reducing planning cost and environmental pollution. A typical test system including several existing and candidate generating units is considered to evaluate the proposed methodology. ESSs with various capacities are considered as candidate ESSs. Considering a large number of generating units and ESSs capacities increases the flexibility of the planning. Simulation results demonstrate that utilizing ESSs significantly reduces GEP cost as well as decreases the environmental pollution.  相似文献   

4.
A review of energy storage technologies for wind power applications   总被引:1,自引:0,他引:1  
Due to the stochastic nature of wind, electric power generated by wind turbines is highly erratic and may affect both the power quality and the planning of power systems. Energy Storage Systems (ESSs) may play an important role in wind power applications by controlling wind power plant output and providing ancillary services to the power system and therefore, enabling an increased penetration of wind power in the system. This article deals with the review of several energy storage technologies for wind power applications. The main objectives of the article are the introduction of the operating principles, as well as the presentation of the main characteristics of energy storage technologies suitable for stationary applications, and the definition and discussion of potential ESS applications in wind power, according to an extensive literature review.  相似文献   

5.
Using electric storage systems (ESSs) is known as a viable strategy to mitigate the volatility and intermittency of renewable distributed generators (DGs) in microgrids (MGs). Among different electric storage technologies, battery energy storage (BES) is considered as the best option. In unit commitment (UC) module, the set of committed dispatchable DGs along with their power, power exported to/imported from macrogrid and status and power of ESS units are determined. In this paper, BES degradation is considered in UC formulation and an efficient particle swarm optimisation with quadratic transfer function is proposed for solving UC in BES‐integrated MGs, while the uncertainties of demand, renewable generation and market price are considered and dealt with robust optimisation. UC is formulated as a multi‐objective optimisation problem whose objectives are MG operation cost and BES degradation. The resultant multi‐objective optimisation problem is converted into a single‐objective optimisation problem and the effect of weight factors on MG operation cost and BES lifecycle are investigated. The results show that by consideration of BES degradation in objective function, BES lifecycle increases from 350 to 500 and the minimum depth of charge increases from 5.5% to 34%; however, MG operation cost increases from $8717 to $8910.2. The results also show that by consideration of uncertainties, MG's operation cost increases by 8.22%.  相似文献   

6.
During major disturbances in electric power system (PS) penetrated with renewable energy sources, primary and supplementary automatic generation control (AGC) strategies usually show inefficiency in mitigating the frequency and power oscillations because of sluggish control action. The frequency and power deviations should be controlled to retain the generation‐demand balance, which reinforce the quality and stability of overall PS. The fast‐acting energy storage systems (ESSs) having very small time constants like capacitive energy storage (CES) and redox flow battery (RFB) are utilised in this study to improve these dynamic responses. To conduct the analysis, initially, a two‐area nonreheat thermal PS with extra generations from wind turbine system (WTS) and dish‐stirling solar thermal system (DSTS) is explored extensively, and then to validate the efficacy of the method, the approach is tested on two‐area nonreheat thermal system having governor deadband (GDB) nonlinearity, reheat thermal, and restructured multisource thermal gas systems. An imperialist competition algorithm (ICA) optimised fuzzy PID‐filter‐(1 + PI) controller named as FPIDF‐(1 + PI) is utilised as supplementary controller, and its performance with CES/CES‐RFB is compared with ICA‐optimised FPIDF with/without CES and existing optimal PI/PID/PIDF/FPID controller without CES. Investigation of dynamic responses for sudden variation in power demand unveils the superiority of the control approach compared with others regarding settling time, peak undershoot, and performance index. Analysing the impact of ESSs on the responses divulges that the amalgamation of CES‐RFB in PS imparts better system dynamics. The robustness analysis suggests that ICA‐optimised controller with ESSs performs excellently and robustly for ±25% variation in PS parameters, random load disturbances, and nonlinearities.  相似文献   

7.
由于国内的储能技术起步较晚,分布式电源中应用单一储能介质很难满足系统运行要求.基于某公司的光伏储能并网系统示范项目,以具有快速响应特性的超级电容器和具有大容量储能特性的锂离子电池为混合储能系统,以储能控制器为控制核心统一协调控制,使电能以可控功率按需送入电网.该系统可有效提高储能系统的功率输出能力,优化储能系统的充放电过程,延长储能电池的使用寿命,具有良好的应用及推广价值.  相似文献   

8.
储能系统由于能够实现电能的时空平移,具有响应速度快,规模化等优点,是改善风电波动性,提高其并网能力的有效手段,构建风储联合发电系统成为目前研究重点.简单介绍了风电并网对电力系统的影响及不同类型电池储能技术的发展现状,给出了部分国内外风储联合发电系统的示范工程,并分析了平滑风电功率波动,跟踪计划出力曲线和削峰填谷3种主要运行方式,重点阐述了目前风储联合发电系统控制策略和储能容量配置研究现状,对进一步开展风储联合发电系统的研究进行了展望,指出经济性仍然是制约储能技术应用的关键问题之一,提高包含储能单元的风储联合发电系统的经济性是今后的研究重点.  相似文献   

9.
Generation expansion planning (GEP) is a power plant mix problem that identifies what, where, when, and how new generating facilities should be installed and when old units be retired over a specific planning horizon. GEP ensures that the quantity of electricity generated matches the electricity demand throughout the planning horizon. This kind of planning is of importance because most production and service delivery is dependent on availability of electricity. Over the years, the traditional GEP approaches have evolved to produce more realistic models and new solution algorithms. For example, with the agitation for green environment, the inclusion of renewable energy plants and energy storage in the traditional GEP model is gradually gaining attention. In this regards, a handful of research has been conducted to identify the optimal expansion plans based on various energy‐related perspectives. The appraisal and classification of studies under these topics are necessary to provide insights for further works in GEP studies. This article therefore presents a comprehensive up‐to‐date review of GEP studies. Result from the survey shows that the integration of demand side management, energy storage systems (ESSs), and short‐term operational characteristics of power plants in GEP models can significantly improve flexibility of power system networks and cause a change in energy production and the optimal capacity mix. Furthermore, this article was able to identify that to effectively integrate ESS into the generation expansion plan, a high temporal resolution dimension is essential. It also provides a policy discussion with regard to the implementation of GEP. This survey provides a broad background to explore new research areas in order to improve the presently available GEP models.  相似文献   

10.
The goal of this study is to find the optimal sizes of renewable energy systems (RES) based on photovoltaic (PV) and/or wind systems for three energy storage system (ESS) scenarios in a micro‐grid; (1) with pumped hydro storage (PHS) as a long‐term ESS, (2) with batteries as a short‐term ESS, and (3) without ESS. The PV and wind sizes are optimally determined to accomplish the maximum annual RES fraction (FRES ) with electricity cost lower than or equal to the utility tariff. Furthermore, the effect of the use of battery and PHS on the electricity cost and FRES are studied. A university campus on a Mediterranean island is selected as a case study. The results show that PV‐wind hybrid system of 8 MW wind and 4.2 MW PV with 89.5 MWh PHS has the highest FRES of 88.0%, and the highest demand supply fraction as 42.6%. Moreover, the results indicate that the economic and technical parameters of RESs are affected significantly by the use of ESSs depending on the type and the capacity of both the RES and the ESS.  相似文献   

11.
Because of highly increasing energy consumption, environmental issues and lack of common energy sources, the use of renewable energy sources especially wind power generation technology is increasing with significant growth in the world. But due to the variable nature of these sources, new challenges have been created in the balance between production and consumption of power system. The hydrogen energy storage (HES) system by storing excess wind power through the technology of power to hydrogen (P2H) and delivering it to the electricity network through hydrogen-based gas turbine at the required hours reduces not only wind alternation but can play an important role in balancing power production and consumption. On the other hand, power consumers by participating in demand response (DR) programs can reduce their consumption at peak load or wind power shortage hours, and increase their consumption at low-load or excess wind power hours to reduce wind power spillage and system energy cost. This paper proposes a stochastic security constrained unit commitment (SCUC) with wind energy considering coordinated operation of price-based DR and HES system. Price-based DR has been formulated as a price responsive shiftable demand bidding mechanism. The proposed model has been tested on modified 6-bus and 24-bus systems. The numerical results show the effect of simultaneous consideration of HES system and price-based DR integrated with wind energy on hourly generation scheduling of thermal units. As a result there is some reduction in wind generation power spillage and daily operation cost.  相似文献   

12.
Decarbonization of the power sector is a key step towards greenhouse gas emissions reduction. Due to the intermittent nature of major renewable sources like wind and solar, storage technologies will be critical in the future power grid to accommodate fluctuating generation. The storage systems will need to decouple supply and demand by shifting electrical energy on many different time scales (hourly, daily, and seasonally). Power-to-Gas can contribute on all of these time scales by producing hydrogen via electrolysis during times of excess electrical generation, and generating power with high-efficiency systems like fuel cells when wind and solar are not sufficiently available. Despite lower immediate round-trip efficiency compared to most battery storage systems, the combination of devices used in Power-to-Gas allows independent scaling of power and energy capacities to enable massive and long duration storage. This study develops and applies a model to simulate the power system balance at very high penetration of renewables. Novelty of the study is the assessment of hydrogen as the primary storage means for balancing energy supply and demand on a large scale: the California power system is analyzed to estimate the needs for electrolyzer and fuel cell systems in 100% renewable scenarios driven by large additions of wind and solar capacities. Results show that the transition requires a massive increase in both generation and storage installations, e.g., a combination of 94 GW of solar PV, 40 GW of wind, and 77 GW of electrolysis systems. A mix of generation technologies appears to reduce the total required capacities with respect to wind-dominated or solar-dominated cases. Hydrogen storage capacity needs are also evaluated and possible alternatives are discussed, including a comparison with battery storage systems.  相似文献   

13.
Efficient energy production and consumption are fundamental points for reducing carbon emissions that influence climate change. Alternative resources, such as renewable energy sources (RESs), used in electricity grids, could reduce the environmental impact. Since RESs are inherently unreliable, during the last decades the scientific community addressed research efforts to their integration with the main grid by means of properly designed energy storage systems (ESSs). In order to highlight the best performance from these hybrid systems, proper design and operations are essential. The purpose of this paper is to present a so-called model predictive controller (MPC) for the optimal operations of grid-connected wind farms with hydrogen-based ESSs and local loads. Such MPC has been designed to take into account the operating and economical costs of the ESS, the local load demand and the participation to the electricity market, and further it enforces the fulfillment of the physical and the system's dynamics constraints. The dynamics of the hydrogen-based ESS have been modeled by means of the mixed-logic dynamic (MLD) framework in order to capture different behaviors according to the possible operating modes. The purpose is to provide a controller able to cope both with all the main physical and operating constraints of a hydrogen-based storage system, including the switching among different modes such as ON, OFF, STAND-BY and, at the same time, reduce the management costs and increase the equipment lifesaving. The case study for this paper is a plant under development in the north Norway. Numerical analysis on the related plant data shows the effectiveness of the proposed strategy, which manages the plant and commits the equipment so as to preserve the given constraints and save them from unnecessary commutation cycles.  相似文献   

14.
This paper presents a hybrid Fuel Cell-based Power System (FCPS) consisting of fuel cell and hybrid Energy Storage Systems (ESSs), including a battery with high energy density and supercapacitor with high power density to overcome the sudden load demand change and improving the reliability of the delivered power. Any hybrid power system needs Energy Management Strategies (EMS) to balance the power between the different energy sources. In this paper, a comparative analysis of three energy management strategies, including the state machine control method, the classical PI control method and equivalent consumption minimization strategy (ECMS) is performed. The paper's main objective is enhancing the DC-bus voltage profile of a hybrid fuel cell/battery/supercapacitor power system equipped with the developed under-mentioned EMS by using a hybrid modified optimization technique that combines Harris Hawks optimization (HHO) and Sine Cosine Algorithm (SCA). The new hybrid HHO-SCA is employed to determine the optimal control parameters of the DC-bus voltage controller, which significantly assists in enhancing the DC-bus voltage profile as well as the performance of the applicable ESS in terms of improving efficiency and SoC. The effectiveness of the suggested control schemes is simulated using MATLAB/SIMULINK software. The simulation results confirmed that the proposed HHO-SCA is superior and efficient in improving the DC-bus voltage.  相似文献   

15.
随着风力发电大规模入网,其随机性,波动性和间歇性特征对电力系统调频,调峰等有功平衡手段及电压稳定的影响越来越严重.储能系统能够在一定程度上控制风场的输出功率,平抑风电功率波动,改善风机低电压穿越能力,甚至为系统提供辅助服务,是从风场侧提高系统对风电的接纳能力的可行解决方案之一.作者在简要的介绍了风场储能技术应用现状的基础上,重点针对储能型风场内蓄电池储能系统的设计方案,容量优化及控制策略的研究现状及关键问题进行综述及探讨.  相似文献   

16.
Wind generation (WG) units as renewable energy sources (RESs) are increasing in the world due to environmental functions and lack of conventional energy sources. Also, hydrogen storage system (HSS) as an energy storage system (ESS) is used to cope with variable nature of RESs in which the concepts of power to hydrogen (P2H) and hydrogen to power (H2P) are defined. In this work, a risk-averse stochastic operation of HSS and WG is modeled using a scenario-based stochastic approach by considering price-responsive demand response (DR) program. All uncertainties are modeled via a scenario-based stochastic approach while the risk related uncertainties are modeled via the downside risk constraints (DRC) to capture the risk-averse operation of the HSS and WG. In order to investigate the impact of DRC implementation, a risk-averse strategy is compared versus risk-neutral strategy. Compared results show that the risk-in-cost (RIC) is reduced while the expected operation cost (EOC) is raised to deal with the risk of the uncertainty.  相似文献   

17.
Proposing a cost-effective off-grid Hybrid Renewable Energy System (HRES) with hydrogen energy storage with a minimum CO2 emission is the main objective of the current study. The electricity demand of an office building is considered to be supplied by Photovoltaic Panels and wind turbines. The office building, modeled in Energy Plus and Open studio, has annual electricity consumption of 500 MWh electricity. 48.9% of the required electricity can be generated via renewable resources. Considering a system without energy storage, the remaining amount of electricity is generated from diesel generators. Hence, for reducing CO2 emission and fuel costs, a hydrogen energy storage system (ESS) is integrated into the system. Hydrogen ESS is responsible for supplying 38.6% of the demand electricity, which means that it can increase the energy supplying ability of the system from 48.9% to 87.5%. In addition to analyzing the application of the hydrogen storage system, the effect of four different kinds of fuel is considered as well. effects of Natural gas, Diesel, Propane, and LPG on the system's application are investigated in this study. Results indicate that natural gas emits less amount of CO2 compared to other fuels and also has a fuel cost of 3054 $/year, while hydrogen ESS is available. For the renewable system without ESS, the fuel cost rises to 10,266 $/year. However, liquid gas, Propane, and LPG have better performance in terms of CO2 emission and fuel cost, respectively.  相似文献   

18.
J.K. Kaldellis  D. Zafirakis 《Energy》2007,32(12):2295-2305
The high wind and solar potential along with the extremely high electricity production cost met in the majority of Greek Aegean islands comprising autonomous electrical networks, imply the urgency for new renewable energy sources (RES) investments. To by-pass the electrical grid stability constraints arising from an extensive RES utilization, the adaptation of an appropriate energy storage system (ESS) is essential. In the present analysis, the cost effect of introducing selected storage technologies in a large variety of autonomous electrical grids so as to ensure higher levels of RES penetration, in particular wind and solar, is examined in detail. A systematic parametrical analysis concerning the effect of the ESSs’ main parameters on the economic behavior of the entire installation is also included. According to the results obtained, a properly sized RES-based electricity generation station in collaboration with the appropriate energy storage equipment is a promising solution for the energy demand problems of numerous autonomous electrical networks existing worldwide, at the same time suggesting a clean energy generation alternative and contributing to the diminution of the important environmental problems resulting from the operation of thermal power stations.  相似文献   

19.
Hybrid systems comprising battery energy storage systems (BESSs) and wind power generation entail considerable advances on the grid integration of renewable energy. Doubly fed induction generators (DFIGs) stand out among different wind turbine (WT) technologies. On the other hand, electrochemical batteries have proved to be valid for these purposes. In this paper, a comparative analysis is carried out between two alternative configurations for hybrid WT‐BESS systems, where the BESS is connected either outside or inside the DFIG. The modeling of these two configurations and the control systems applied for achieving the coordinate operation of the energy sources (DFIG and batteries) are illustrated. The hybrid systems under study are evaluated by simulation under normal operation (wind speed fluctuations and grid demand changes) and grid faults. Simulation results show that both configurations improve the grid integration capability of the WT, although the configuration with external BESS presents better results since it can provide additional active/reactive power injection. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
讨论了储能技术的分类及应用范围,并对中小型风力发电系统的结构及其系统中储能的作用进行了阐述。同时分析了碳纳米管超级电容器储能、氢储能、超级电容器和蓄电池混合储能三种很有前途储能技术在中小型风力发电系统中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号