首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of concentrating systems has been proposed as a way to reduce the cost of electrical energy from photovoltaic (PV) module. Since 1970s, different solar collector designs have been used to increase energy flux on the PV module. This study aims at providing a comprehensive review of development in the application of compound parabolic concentrators (CPCs) to solar photovoltaic conversion for the past five decades. By narrowing down the application of CPCs to electrical energy only gives a reader an opportunity to clearly understand the detail development stages, challenges, and research opportunities for further improvement. From this review, it has been found that during 1970s, all studies on the application of CPCs to solar photovoltaic conversion were mainly focused on establishing technical feasibility and cost effectiveness. Thereafter (1981‐May 2018), extensive studies were carried out to resolve challenges that were observed during the establishment stage. However, it has been found that even though the power output of the PV modules with the CPC was always higher than similar modules without the CPC, the values were less than the expected (theoretical) results. This was due to optical losses, series resistance losses, non‐uniform illumination effect, and high operating cell temperature effect. In addition, high cost of the PV‐CPC systems and low concentration ratio of the CPCs were also the main concerns of various researchers.  相似文献   

2.
Compound parabolic concentrator (CPC) type collectors have been viewed as the optimal design for totally stationary concentrators. However the CPC is ideal only for uniform incident solar flux averaged over the energy collection period. The actual yearly-averaged incident flux map turns out to be highly non-uniform, as a function of projected incidence angle, which implies that concentration can be increased markedly if optical collection efficiency is compromised. The question then becomes: what concentrator angular acceptance function is best matched to nature's radiation flux input, and how much energy can such a concentrator deliver? The recently-invented tailored edge-ray concentrator (TERC) approach could be used to determine optimal reflector contours, given the optimal acceptance angle function. We demonstrate that totally stationary TERCs can have around three times the geometric concentration of corresponding optimized stationary CPCs, with greater energy delivery per absorber area, in particular for applications that are currently being considered for stationary evacuated concentrators with the latest low-emissivity selective coatings, e.g. solar-driven double-stage absorption chillers (at around 170°C) and solar thermal power generation (at around 250°C).  相似文献   

3.
The high cost of photovoltaic (PV) energy has imposed extensive research efforts in order to provide alternatives to the conventional crystalline silicon (c-Si) PV technology. Thin film PV modules based on Cu(In,Ga)Se2 (CIGS) is considered one of the most promising alternatives for mass production of low-cost PV. In parallel to the development of new module technologies, there is an increasing interest for using concentrating optics in PV systems in order to increase radiation onto the modules. By replacing the relatively expensive PV absorbers with low-cost concentrators there is a potential reduction of overall system costs. The reflector types considered in this study are based on the compound parabolic concentrator (CPC) and the planar reflector. These are low-concentrating devices with concentration ratios of 1–4. With the CPC as well as the planar reflector, the illumination on the PV module will be non-uniform, with local light intensities that are considerably larger than the average 4 suns. For conventional c-Si modules, this is detrimental to module performance. It is demonstrated in the present work that modules based on thin film technology are better candidates for reflector applications. The principles of design and fabrication of CIGS thin film PV modules for low-concentrating systems are discussed, and experimental results from measurements of CIGS modules under concentrated illumination are evaluated.  相似文献   

4.
In some applications of compound parabolic concentrators (CPCs), the incidence angle of solar rays on the absorber is restricted and must be less than a specified value (θe) for efficient energy conversion or transfer. For a flat receiver with a restricted incidence angle (RWARIA, in short), two ideal concentrators designed based on one-sided flat absorber can be employed for radiation concentration: one is the CPC without exit angle restriction (CPC-1), and another is the CPC with a restricted exit angle (CPC-2). In this work, the angular dependence of optical efficiency factor of both CPC-1 and CPC-2 for concentrating radiation on the RWARIA was derived, and a mathematical procedure to estimate daily radiation accepted by the RWARIA by using east-west oriented CPC-1 and CPC-2 was suggested based on the solar geometry and monthly horizontal radiation. Results by numerical calculations show that, for fixed full CPC-1 and CPC-2 with identical acceptance half-angle (θa), the CPC-2 is slightly more efficient than CPC-1 for concentration radiation on the RWARIA except periods of about 30 days before and after both equinoxes; whereas for fixed truncated CPC-1 and CPC-2 with identical geometric concentration factor (Ct) and θa, the CPC-2 is always more efficient. Results also indicate that, for the case of the tilt-angle of the aperture of CPCs being yearly adjusted four times at three tilts, full CPC-2 is less but truncated CPC-2 is more efficient than CPC-1 for concentrating radiation. In practical applications, CPCs are usually truncated due to less efficient of top portion of a CPC reflector for radiation concentration and less reflector material use, therefore, the CPC-2 is more favorable and advisable for concentrating radiation on the RWARIA.  相似文献   

5.
Correlations between Nusselt and Grashof numbers have been proposed for convective heat transfer in compound parabolic concentrating solar energy collectors (CPCs). The discrepancies between these correlations are discussed. CPC designs considered range from a tubular absorber with or without an envelope; with one or two concentric envelopes; with eccentric envelopes; with various levels of reflector truncation and for a range of system inclination angles.  相似文献   

6.
根据非跟踪内聚光型太阳能光电-光热复合管的结构形式及其受光体的特殊需求,采用Winston的CPC设计原理,对圆管内具有特殊形状的半圆柱接收器的复合抛物面聚光器进行光学设计,得到了较为理想的聚光器设计曲线,并对结果进行数值仿真,给出各入射角的光线分布图和光强分布图。  相似文献   

7.
The optical efficiency of concentrating solar thermal and photovoltaic systems with cylindrical geometries is asymmetrical about the optical axis. Biaxial models, based on projected incidence angles, are often used to estimate the annual performance of asymmetric concentrators. However, the use of projected angles tends to underestimate optical losses in the cover glass. In this work, a biaxial model for the incidence angle dependence of the optical efficiency, which uses the transverse projected incidence angle for determining the influence of the reflector and the real incidence angle to determine the influence of the glazing is proposed. The model gives an absolute value of the optical efficiency and it is valid for concentrating systems with translational symmetry, as well as for flat plate collectors and planar photovoltaic modules. The model is validated for a system with an east–west aligned parabolic reflector without a cover glass and it is shown that the dependence on the optical efficiency of the reflector on the longitudinal angle of incidence is negligible. The model is compared with the commonly used biaxial model and it is found that the difference is a couple of percentage points when the difference between the longitudinal projected incidence angle and the real incidence angle is large and the angle of incidence on the glass is high.  相似文献   

8.
This article reports on the design and performance analysis of a solar thermoelectric power generation plant (STEPG). The system considers both truncated compound parabolic collectors (CPCs) with a flat receiver and conventional flat-plate collectors, thermoelectric (TE) cooling and power generator modules and appropriate connecting pipes and control devices. The design tool uses TRNSYS IIsibat-15 program with a new component we developed for the TE modules. The main input data of the system are the specifications of TE module, the maximum hot side temperature of TE modules, and the desired power output. Examples of the design using truncated CPC and flat-plate collectors are reported and discussed for various slope angle and half-acceptance angle of CPC. To minimize system cost, seasonal adjustment of the slope angle between 0° and 30° was considered, which could give relatively high power output under Bangkok ambient condition. Two small-scale STEPGs were built. One of them uses electrical heater, whereas the other used a CPC with locally made aluminum foil reflector. Measured data showed reasonable agreement with the model outputs. TE cooling modules were found to be more appropriate. Therefore, the TRNSYS software and the developed TE component offer an extremely powerful tool for the design and performance analysis of STEPG plant.  相似文献   

9.
In this article, a mathematical procedure is developed to estimate the annual collectible radiation captured by fixed compound parabolic concentrators (CPCs, in short) oriented in east-west direction based on the monthly horizontal radiation. Results show that for fixed east–west aligned symmetric CPCs used over the atmosphere, the optimal acceptance half-angle for maximizing its annual energy collection was 25.97°, the yearly optimal tilt-angle of apertures relative to the horizon was equal to the site latitude, and the maximum annual average optical concentration ratio was uniquely related to the site latitude. For CPCs used in China, the optimal acceptance half-angle were in between 25.3° and 26°, the yearly optimal tilt-angle approached the site latitude with a deviation less than 1°, and the maximum annual average optical concentration ratios ranged from 1.45 to 1.74. Results also indicated that CPCs were more favorable to be used in the areas with higher latitude and abundant solar resources. Effects of tilt-angle and azimuth angle of CPCs on its annual solar gain were also presented.  相似文献   

10.
In this paper, the authors propose an innovative non‐tracking three‐dimensional compound parabolic concentrator (3‐D CPC) solar collector, which has excellent thermal efficiency for a high‐temperature range (100–200°C). In the past studies, in order to improve the thermal efficiency of the solar collector in a high‐temperature range, very high concentration ratios and tracking systems have been adopted. However, conventional high concentration solar collectors are not cost‐effective and are inappropriate for small‐rating thermal electric generation systems for residential use. The proposed 3‐D CPC collector has a moderate concentration ratio and does not need tracking. Initially, the tentative 3‐D CPC collector was fabricated and its thermal performance was tested. Next, numerical simulations of the optical characteristics of the 3‐D CPC collector were carried out via the ray‐tracing method. Finally, the specification of the optimal 3‐D CPC collector was clarified. Applications of the thermal electric system will also be mentioned. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(5): 323–335, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20121  相似文献   

11.
The primary objective of the present study was to evaluate the performance characteristics (thermal and optical) of a properly truncated CPC that could be used in two-stage solar thermal power generation systems. The CPCs selected for testing were the 5:1 cones with a 25° acceptance angle and an untruncated concentration ratio of 5.6×. Experiments were carried out at the Advanced Components Test Facility of the Georgia Tech Research Institute. Several cones of the same dimensions but with different shell materials, reflector surfaces, and employing various heat removal methods were tested. It has been demonstrated experimentally for the first time that the CPCs with high reflectivity surfaces can have optical efficiencies in the range of 90% and above. In order to verify these results, a computer ray-trace analysis was also performed. These tests have shown that passive cooling alone is adequate for small-scale, low-power systems.  相似文献   

12.
Compound parabolic concentrator(CPC) is a representative among solar concentrators, one of whose disadvantage is that the concentration ratio limits the half acceptance angle. Based on this, researchers put forward a novel structure, named the lens-walled CPC. This paper reviews the design and development of lens-walled CPC. The structure of the symmetric and asymmetric lens-walled CPC and the improved ones are presented, and their indoor and outdoor performances are also illustrated. The lens-walled CPC has a larger half acceptance angle and a more uniform flux distribution that is suitable for PV application. Furthermore, the life-cycle assessment for building integrated with PV is performed and it shows that the energy payback time of such integrated system has a significant advantage. In addition, future research areas are also indicated that may provide more functions and more stable performance. The design methods and developmental directions given in this study would provide many references in solar optical research and solar concentrator optimization.  相似文献   

13.
A system has been developed to use compound parabolic concentrators to collect solar energy and to generate steam. A CPC reflector profile with a V groove at the bottom of the reflector to reduce the gap losses was designed with a half acceptance angle of 23.5° for a tubular absorber of OD 30 mm. Five troughs fabricated with fiberglass substrate pasted over with UV stabilized self-adhesive aluminized polyester foil having high specular reflectivity joined together side by side comprise the CPC module with an aperture area of 2.04 m2. Copper tubes coated with NALSUN selective coatings and enclosed by borosilicate glass envelope act as absorbers. The reflector absorber assembly housed in a single glass wool insulated wooden box forms the CPC collector. Using water as the heat transfer fluid efficiency tests were carried out with different inlet temperatures. In situ steam generation testing and possible application to steam cooking were also carried out. A theoretical modeling was developed by setting up different heat balancing equations and a reasonable agreement between theoretical computed values and the experimental values was observed.  相似文献   

14.
复合抛物面聚光器(CPC)光学分析研究   总被引:14,自引:0,他引:14  
阐述了复合抛物面聚光器(CPC)的设计原理和光学原理,简单介绍了复合抛物面聚光器(CPC)与不同接收器的结合形式。主要介绍了平板型CPC和圆管型CPC的设计方法和相关量的计算公式的推导结果最后主要说明了截取比在CPC系统中对系统效率和系统的经济性的影响,认为合适的截取比可增加CPC的利用率并且可大大的节省材料,对CPC的推广应用很有利。  相似文献   

15.
An experimental investigation of an inverted absorber integrated collector storage solar water heater mounted in the tertiary cavity of a compound parabolic concentrator with a secondary cylindrical reflector has been performed under simulated solar conditions. The solar water heaters performance was determined with the aperture parallel to the simulator for a range of transparent baffles positioned at different locations within the collector cavity. Results indicate that glass baffles located at the upper portion of the exit aperture of the CPC can reduce thermal losses through convection suppression without significantly increasing optical losses.  相似文献   

16.
In the present investigation a theoretical analysis has been presented for the modelling of thermal and electrical processes of a hybrid PV/T air heating collector coupled with a compound parabolic concentrator (CPC). In this design, several CPC troughs are combined in a single PV/T collector panel. The absorber of the hybrid PV/T collector under investigation consists of an array of solar cells for generation of electricity, while collector fluid circulating past the absorber provides useful thermal energy as in a conventional flat plate collector. In the analysis, it is assumed that solar cell efficiency can be represented by a linear decreasing function of its temperature. Energy balance equations have been developed for the various components of the system. Based on the developed analysis, both thermal and electrical performance of the system as a function of system design parameters are presented and discussed. Results have been presented to compare the performance of hybrid PV/T collector coupled with and without CPC. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
Experimental study of CPC type ICS solar systems   总被引:1,自引:0,他引:1  
Extensive experimental study on solar water heaters, which were developed in our laboratory, is presented. These solar devices are integrated collector storage (ICS) systems with single horizontal cylindrical storage tank properly placed in symmetric CPC type reflector trough. In this paper we study ICS solar systems, which differ in storage tank diameter and correlate their thermal performance and the ratios of the stored water volume per aperture area and also per total external surface area. Based on the results of this study and aiming to achieve improved ICS systems, we considered an effective tank diameter and we extracted by outdoor tests the performance of a number of experimental models differing in the absorbing surface, reflector and transparent cover. We calculated the mean daily efficiency and the thermal loss coefficient during night of each system combination. In addition, 24 h and four days operation diagrams of the variation of water temperature of the studied ICS systems are compared with the corresponding diagrams of two flat plate thermosiphonic units with mat black and selective absorbing surface, respectively. The experimental results show that ICS system with selective absorbing surface, high transmissivity of the transparent cover and high reflectance of its reflector surface performs efficiently enough, both during the day and night operation, approaching the thermal performance of the corresponding thermosiphonic unit of flat plate collector with selective absorber.  相似文献   

18.
The compound parabolic and simple parabolic solar collectors are analyzed and compared for their ability to accept non-direct radiation and for their respective reflector arc-lengths. The simple parabolic concentrator (SPC) can make use of some non-direct solar radiation if the absorber tube is intentionally enlarged so as to intercept defocussed radiation. A principal advantage of collecting non-direct radiation with a SPC rather than with a compound parabolic concentrator (CPC) is the reduced materials use in the construction of the reflector, but a principal disadvantage is the reduction of acceptance angle to about that of the CPC. However, a SPC with concentration ratio less than 10 can still collect most of the circumsolar non-direct radiation.  相似文献   

19.
The intermediate range of concentration ratios (1.5X–10X) which can be achieved with CPCs without diurnal tracking provides both economic and thermal advantages for solar collector design even when used with non-evacuated absorbers. The present paper summarizes more than 3 yr of research on non-evacuated CPCs and reviews measured performance data and critical design considerations. Concentrations in the upper portions of the practical range (e.g. 6X) can provide good efficiency (40–50 per cent) in the 100–160°C temperature range with relatively frequent tilt adjustments (12–20 times per year). At lower concentrations (e.g. 3X) performance will still be substantially better than that for a double glazed flat plate collector above about 70°C and competitive below, while requiring only semi-annual adjustments for year round operation. In both cases the cost savings associated with inexpensive reflectors, and the optimal coupling to smaller, simple inexpensive absorbers (e.g. tubes, fins, etc.) can be as important an advantage as the improved thermal performance.The design problems for non-evacuated CPC collectors are entirely different from those for CPC collectors with evacuated receivers. For example, heat loss through the reflector can become critical, since ideal CPC optics demands that the reflector extend all the way to the absorber. Recent improvements in reflector surfaces and low cost antireflection coatings have made practical a double-glazed non-evacuated CPC design. It is calculated that a 1.5X version of such a collector would have an optical efficiency ηo = 0.71, a heat loss coefficient U = 2.2 W/m2°C and a heat extraction effciency factor F′ ≥ 0.98, while requiring no tilt adjustments.  相似文献   

20.
A detailed one-dimensional numerical model describing the heat and fluid-dynamic behavior inside a compound parabolic concentrator (CPC) used as an ammonia vapor generator has been developed. The governing equations (continuity, momentum, and energy) inside the CPC absorber tube, together with the energy equation in the tube wall and the thermal analysis in the solar concentrator were solved.The computational method developed is useful for the solar vapor generator design applied to absorption cooling systems. The effect on the outlet temperature and vapor quality of a range of CPC design parameters was analyzed. These parameters were the acceptance half-angle and CPC length, the diameter and coating of the absorber tube, and the manufacture materials of the cover, the reflector, and the absorber tube. It was found that the most important design parameters in order to obtain a higher ammonia–water vapor production are, in order of priority: the reflector material, the absorber tube diameter, the selective surface, and the acceptance half-angle.The direct ammonia–water vapor generation resulting from a 35 m long CPC was coupled to an absorption refrigeration system model in order to determine the solar fraction, cooling capacity, coefficient of performance, and overall efficiency during a typical day of operation. The results show that approximately 3.8 kW of cooling at −10 °C could be produced with solar and overall efficiencies up to 46.3% and 21.2%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号