首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Generalised spatial modulation (GSM) is a recently developed multiple‐input multiple‐output (MIMO) technique aimed at improving data rates over conventional spatial modulation (SM) systems. However, for identical antenna array size and configurations (AASC), the bit error rate (BER) of GSM systems in comparison with SM systems is degraded. Recently, a GSM system with constellation reassignment (GSM‐CR) was proposed in order to improve the BER of traditional GSM systems. However, this study focused on M‐ary quadrature amplitude modulation (M‐QAM) schemes. The focus of this paper is the application of a circular constellations scheme, in particular, amplitude phase shift keying (APSK) modulation, to GSM and GSM‐CR systems. An analytical bound for the average BER of the proposed M‐APSK GSM and M‐APSK GSM‐CR systems over fading channels is derived. The accuracy of this bound is verified using Monte Carlo simulation results. A 4 × 4 16‐APSK GSM‐CR system achieves a gain of 2.5 dB at BER of 10?5 over the traditional 16‐APSK GSM system with similar AASC. Similarly, a 6 × 4 32‐APSK GSM‐CR system achieves a gain of 2 dB at BER of 10?5 over equivalent 32‐APSK GSM system.  相似文献   

2.
When a high spectral efficiency is needed, the cost of Euclidean distance‐based antenna selection for spatial modulation (EDAS‐SM) in terms of hardware, size, and computational complexity is significantly increased because of the large transmit antenna array required. In comparison, generalized spatial modulation (GSM) can match the spectral efficiency of EDAS‐SM, while using significantly fewer transmit antenna elements. However, the error performance of GSM is naturally limited because of the use of a predetermined and fixed set of transmit antenna combinations. By exploiting knowledge of the channel, the optimal set of transmit antenna combinations can be selected by maximizing the minimum Euclidean distance between transmit vectors. In this paper, an adaptive scheme for selection of the optimal set of transmit antenna combinations is proposed to improve the reliability of GSM. The computational overhead of the said scheme is relatively high; hence, a low‐complexity suboptimal scheme for selection of the set of transmit antenna combinations is further proposed. The improved GSM schemes address the spectral efficiency limitation of EDAS‐SM, while demonstrating superior error performance.  相似文献   

3.
Space‐time block coded spatial modulation (STBC‐SM) exploits the advantages of both spatial modulation and the Alamouti space‐time block code. Meanwhile, space‐time labeling diversity has demonstrated an improved bit error rate (BER) performance in comparison to the latter. Hence, in this paper, we extend the application of labeling diversity to STBC‐SM, which is termed STBC‐SM‐LD. Under identical channel assumptions, STBC‐SM‐LD exhibits superior BER performance compared to STBC‐SM. For example, with 4 × 4, 64‐quadrature amplitude modulation (64‐QAM), STBC‐SM‐LD has a BER performance gain of approximately 2.6 dB over STBC‐SM. Moreover, an asymptotic bound is presented to quantify the average BER performance of M‐ary QAM STBC‐SM‐LD over independent and identically distributed Rayleigh frequency‐flat fading channels. Monte Carlo simulations for STBC‐SM‐LD agree well with the analytical framework. In addition to the above, low‐complexity (LC) near‐maximum‐likelihood detectors for space‐time labeling diversity and STBC‐SM‐LD are presented. Complexity analysis of the proposed LC detectors shows a substantial reduction in computational complexity compared to their ML detector counterparts. For example, the proposed detector for STBC‐SM‐LD achieves a 91.9% drop in computational complexity for a 4 × 4, 64‐QAM system. The simulations further validate the near‐maximum‐likelihood performance of the LC detectors.  相似文献   

4.
Spatial modulation (SM) is a relatively recent multiple‐input multiple‐output (MIMO) system in which information is carried by the index of the antenna used for transmission as well as by the conventional signal symbols. Several systems that build upon SM have since been proposed including the generalized SM (GSM), a variant of GSM with multiple active antennas (MA‐SM), quadrature SM (QSM), and parallel SM (PSM), among others. The PSM system can increase the spectral efficiency by splitting the antenna set into groups and applying SM independently in each group using the same signal symbol. In this paper, we first derive the upper bound on the error probability of the PSM. The search of the optimal constellation set is then formulated as a multi‐objective optimization problem, where the obtained constellation minimizes the asymptotic error probability. We conclude that as the number of antenna groups increases, the proposed constellation converges to the conventional phase‐shift keying at relatively low number of transmit antennas. The simulation results show that the proposed constellation outperforms conventional constellations by as much as 5 dB, for high‐modulation orders. Since the multi‐objective optimization is independent of the channel matrix, it can be easily done off‐line. This implies that these gains come at no complexity or delay cost.  相似文献   

5.
Sangchoon Kim 《ETRI Journal》2016,38(4):606-611
This paper presents antenna selection schemes for recently proposed quadrature spatial modulation (QSM) systems. The antenna selection strategy is based on Euclidean distance optimized antenna selection (EDAS). The symbol error rate (SER) performance of these schemes is compared with that of the corresponding algorithm associated with spatial modulation (SM) systems. It is shown through simulations that QSM systems using EDAS offer significant improvement in terms of SER performance over SM systems with EDAS. Their SER performance gains are seen to be about 2 dB–4 dB in Es/N0 values.  相似文献   

6.
In this paper, a novel trellis‐coded spatial modulation (TCSM) design method is presented and analyzed. Inspired by the key idea of trellis‐coded modulation (TCM), the detailed analysis is firstly provided on the unequal error protection performance of spatial modulation constellation. Subsequently, the Ungerboeck set partitioning rule is proposed and applied to develop a general method to design the novel TCSM schemes. Different from the conventional TCSM approaches, the novel one based on the Ungerboeck set partitioning rule has similar properties as the classic TCM, which has simple but effective code design criteria. Moreover, the novel designed schemes are robust and adaptive to the generalized Rician fading channels, which outperform the traditional TCSM ones. For examples, the novel 4‐, 8‐, and 16‐state TCSM schemes are constructed by employing different transmit antennas and different modulation schemes in different channel conditions. Simulation results clearly demonstrate the advantages of the novel TCSM schemes over the conventional ones.  相似文献   

7.
In this paper we propose a novel spectrum sharing protocol for overlay cognitive radio networks using non-orthogonal multiple access (NOMA), spatial modulation (SM) and antenna selection (AS). The proposed protocol allows a secondary transmitter (ST) to transmit simultaneously to both a primary receiver (PR) and a secondary receiver (SR) using SM. The usage of NOMA and SM will increase the spectral efficiency for both PR and SR with reduced detection complexity than the case without NOMA in which the detectors are required to jointly detect both SM symbols at each receiver. The application of AS at ST with regards to PR provides higher quality transmission for PR without affecting the performance of SR. The performance of the proposed protocol is investigated by derivations of upper bounds on the average symbol error probabilities at PR and SR and by Monte Carlo simulations. Analytical and simulation results show that the proposed protocol offers efficient spectrum utilization over spectrum sharing protocols proposed recently that uses SM – to convey the primary data to PR through the amplitude phase modulation technique and the secondary data to SR through the index of the active antenna.  相似文献   

8.
陈军  许小东  戴旭初 《信号处理》2014,30(11):1407-1412
为了提高能源使用效率,能量效率(EE)是绿色无线通信研究的主要内容。为了有效提高多天线传输系统的能源使用效率,提出了一种基于能量效率优化的广义空域调制(GSM)系统(EE-GSM)。该系统基于最大化能量效率准则,考虑发射天线数较多的情况,首先利用天线选择算法(AS)确定最佳发射天线子集,然后计算适合广义空域调制系统的有效射频通道(RFC)数,从而实现全局能量效率优化设计。仿真结果和分析表明,与传统的AS-MIMO、GSM及SM系统相比,新系统能有效地提高能量效率,并且改善了系统的误码率和容量性能,同时系统最终所需的有效射频通道数一般为2,3或4个,符合绿色通信系统设计原则。   相似文献   

9.
为了提高码索引调制(code index modulation,CIM)系统的传输效率,提出了一种具有更低复杂度的单输入单输出(single input single output,SISO)的广义正交码索引调制(generalized orthogonal code index modulation,GQCIM)系统。CIM系统使用扩频码和星座符号传输信息,但只能激活两个扩频码索引和一个调制符号。而GQCIM系统以一种新颖的方式克服了只激活一个调制符号的限制,同时充分利用了调制符号的正交性,增加扩频码索引以传输更多的额外信息位,提高了系统的传输效率。此外,分析了GQCIM系统的理论性能,推导了误码率性能的上界。通过蒙特卡罗仿真验证了GQCIM系统的性能,对比发现GQCIM系统的理论和仿真性能一致。而且在相同的传输效率下,结果显示GQCIM系统的性能优于同样具有正交性的调制系统,如广义码索引调制(generalized code index modulation,GCIM)系统、CIM系统、码索引调制-正交空间调制(code index modulation aided quadrat...  相似文献   

10.
Generalized spatial modulation (GSM) is an extension of spatial modulation which is significant for the next generation communication systems. Optimal detection process for the GSM is the maximum-likelihood (ML) detection which jointly detects the antenna combinations and transmitted symbols. However, the receiver is much more complicated than SM due to inter-antenna interference and/or increased number of combinations. Therefore, the computational complexity of the ML detection grows with the number of transmit antennas and the signal constellation size. In this letter, we introduce a novel and simple detection algorithm which uses sub-optimal method based on the least squares solution to detect likely antenna combinations. Once the antenna indices are detected, ML detection is utilized to identify the transmitted symbols. For obtaining near-ML performance while keeping lower complexity than ML detection, sphere decoding is applied. Our proposed algorithm reduces the search complexity while achieving a near optimum solution. Computer simulation results show that the proposed algorithm performs close to the optimal (ML) detection resulting in a significant reduction of computational complexity.  相似文献   

11.
In this work, we propose a novel multi‐bit/symbol spectral‐efficient optical orthogonal modulation scheme based on simultaneously modulating differential quadrature phase shift keying (DQPSK)‐polarization shift keying (PolSK) in a 16‐channel wavelength division multiplexing (WDM)‐based inter‐satellite optical wireless communication (IsOWC) system. Through numerical simulations, we demonstrate a reliable transportation of 16 × 100 Gbps information over 25 000 km of transmission range with acceptable bit error rate (BER) using the proposed system. Further, the impact of space turbulences (ie, pointing error losses) on the BER performance of the proposed IsOWC link has been evaluated using numerical simulations. The simulation results report a successful transportation of information up to 2.7 μrad receiver pointing error angle with acceptable performance.  相似文献   

12.
李小文  赵永宽  刘燕 《电讯技术》2017,57(9):1030-1034
针对广义空间调制(GSM)系统中信号检测复杂度过高的问题,提出了一种基于相位判决的低复杂度检测算法.首先根据一种排序准则对天线组合进行排序,然后将排序后的天线组合中的符号向量依次通过基于相位判决的迫零(ZF)均衡器进行检测,最终得到星座调制符号和激活天线组合.分析和仿真结果表明,该检测算法可以有效缩小接收端的搜索范围,在提供与最大似然(ML)检测算法相近的误比特率(BER)性能的同时,计算复杂度降低了98%.  相似文献   

13.
Spatial modulation techniques (SMTs) have emerged as promising multiple‐input and multiple‐output (MIMO) technology for fifth generation (5G) networks, which can achieve an appealing trade‐off between conflicting design objectives such as reliability, hardware cost, complexity, spectral efficiency, and energy efficiency. Most of the SMTs suffer from significant performance deterioration under correlated fading channels. In this paper, a novel spectral efficient SMT referred as enhanced redesigned spatial modulation (EReSM) is proposed, which is robust against adverse channel correlation effects. At any time instant, EReSM activates either one or two transmit antennas and employs a robust bits to antenna index mapping that ensures the selection of antenna subsets with maximum spatial separation to mitigate the effect of spatial correlation. EReSM also exploits phase rotation of transmitted symbols as an additional dimension to convey an extra information bit. The rotation angles used for bit mapping are optimized for various modulation schemes to maximize the minimum euclidean distance between the symbols. To analyze the performance, analytical upper bound expression for average bit error probability (ABEP) is derived for both uncorrelated and spatially correlated channel conditions. Monte Carlo simulation results substantiate the accuracy of the analytical results and also demonstrate that the proposed EReSM outperform conventional redesigned spatial modulation (ReSM) by at least 4 dB.  相似文献   

14.
In this paper, a high data rate bidirectional relay network is proposed by combining the merits of spatial modulation (SM) and physical layer network coding. All nodes in the network are equipped with multiple antennas. Spatial modulation technique is used to reduce hardware complexity and interchannel interference by activating only one antenna at any time during transmission. In the proposed bidirectional relay network, transmit antennas are selected at the source nodes and relay node on the basis of the order statistics of channel power. It increases received signal power and provides a significant improvement in the outage performance. Also, the data rate of the proposed network is improved by physical layer network coding at the relay node. A closed form analytical expression for the outage probability of the network over Nakagami‐m fading channel is derived and validated by Monte Carlo simulations. In addition, asymptotic analysis is investigated at high signal‐to‐noise ratio region.The outage performance of the proposed network is compared with SM and physical layer network coding bidirectional relay network without transmit antenna selection and point‐to‐point SM. With approximate SNR≈1 dB difference between the two networks, the same data rate is achieved.  相似文献   

15.
This paper presents a novel generalized quadrature spatial modulation (GQSM) transmission scheme using antenna grouping. The proposed GQSM scheme combines QSM and conventional spatial multiplexing (SMux) techniques in order to improve the spectral efficiency (SE) of the system. Analytical and simulation results show that the proposed transmission scheme has minimal losses in terms of the average bit error probability along with the advantage of an increased SE compared with previous SM and QSM schemes. For the case studies, this advantage represents a reduction of up to 81% in terms of the number of required transmit antennas compared with QSM. In addition, a detection architecture based on the ordered successive interference cancellation scheme and the QR decomposition is presented. The proposed QRD‐M adaptive algorithm showed a near‐maximum‐likelihood performance with a complexity reduction of approximately 90%.  相似文献   

16.
Focusing on the problem that differential spatial modulation (DSM) couldn’t obtain transmit diversity and has high decoding complexity,a new differential spatial modulation scheme based on the orthogonal space-time block code was proposed and the proposed scheme is called OSTBC-DSM.There were two matrices in this scheme:the spatial modulation matrix and the symbol matrix.The former was aimed to activate different transmit antennas by setting the position of nonzero elements,and the latter structured symbolic matrix by using orthogonal space-time block codes (OSTBC) as the basic code block.The proposed scheme could obtain full transmit diversity and higher spectral efficiency compared with the conventional DSM schemes.Moreover,the OSTBC-DSM supported linear maximum likelihood (ML) decoding.The simulation results show that under different spectral efficiencies,the proposed OSTBC-DSM scheme has better bit error rate (BER) performance than other schemes.  相似文献   

17.
张燕  岳殿武 《电讯技术》2015,55(1):7-12
针对空间调制(SM)技术存在的缺欠,提出了具有天线选择和中继选择的空间调制系统方案。首先在多输入多输出(MIMO)信道模型下,通过对发送端天线选择,将拥有最佳信道状态的天线选出进行SM,打破SM技术对发送端天线数的限制,并提升采用高阶调制的SM分集性能。然后进一步将此思想引入协作通信网络,结合传感器网络的分级观念,提出采用中继选择和空间调制的中继传输协议,并通过仿真观察系统分集性能的改善。仿真结果表明,上述中继传输协议不仅能提升系统性能,而且使系统配置更加灵活。  相似文献   

18.
针对在湍流信道下空间脉冲位置调制(SPPM)系统误码性能较差的问题,文章将空时分组码与空间调制技术结合,提出了基于比特补码正交空时分组码的空间脉冲位置调制(BCOSTBC-SPPM),利用空时编码增加信息冗余度以改善系统误码性能.同时基于最大似然(ML)检测推导了系统的理论误比特率上界,并通过蒙特卡洛仿真对理论上界进行...  相似文献   

19.
This paper presents the idea of sparse channel estimation using compressed sensing (CS) method for space–time block coding (STBC), and spatially multiplexing (SM) derived hybrid multiple‐input multiple‐output (MIMO) Asymmetrically clipped optical‐orthogonal frequency division multiplexing (ACO‐OFDM) optical wireless communication system. This hybrid system accounts multiplexing gain of SM and diversity gain of STBC technique. We present a new variant of sparsity adaptive matching pursuit (SaMP) algorithm called dynamic step‐size SaMP (DSS‐SaMP) algorithm. It makes use of the inherent and implicit structure of SaMP, along with dynamic adaptivity of step‐size feature which is compatible with the energy of the input signal, thus the name dynamic step size. Existing CS‐based recovery algorithms like orthogonal matching pursuit, SaMP, adaptive step‐size SaMP, and proposed DSS‐SaMP were compared for hybrid MIMO‐ACO‐OFDM visible light communication system. The performance analysis is demonstrated through simulation results with respect to bit error rate, symbol error rate, mean square error, computational complexity, and peak‐to‐average power ratio. Simulation results show that the proposed technique gives improved performance and lesser computational complexity in comparison with conventional estimation algorithms.  相似文献   

20.
This paper shows the analytical performance expressions of M‐ary quadrature amplitude modulation burst symbol transmission for hybrid decode‐or‐amplify‐forward (HDAF) relay schemes over quasi‐static Rayleigh‐fading channels. First, we derive the probability density function of the received instantaneous signal‐to‐noise ratio as the simplified form, which is related to all the possible occurrence probabilities of error‐events for M‐ary quadrature amplitude modulation burst transmission. On the basis of the derived probability density function, we express average bit error probability, average symbol error probability, and average burst error rate as closed forms, which can be also applied to both amplify‐and‐forward and adaptive decode‐and‐forward (ADF) schemes. The analysis and simulation results show that HDAF scheme for burst transmission can achieve the performance of ADF scheme with symbol‐by‐symbol transmission, which is the achievable lower bound. Furthermore, the outage probability, the normalized channel capacity, and the goodput performance are also derived as closed forms. The analysis shows the superiority of HDAF scheme to ADF scheme. Comparison with simulations confirms that the derived analytical expressions are accurate over all signal‐to‐noise ratio regions and for different numbers of relays and modulation orders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号