首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过配位反应制备得到双金属硫化促进剂二乙基二硫代氨基甲酸锌镧配合物(ZnLaDC),在不添加传统活化体系氧化锌(ZnO)/硬脂酸(SA)的情况下,考察了ZnLaDC用量对丁苯橡胶(SBR)/天然橡胶(NR)胎面胶复合材料硫化特性及物理机械性能的影响,并与传统硫化体系二乙基二硫代氨基甲酸锌(ZnDC)/ZnO/SA制备的硫化胶性能进行了对比。结果表明,随着ZnLaDC用量的增加,SBR/NR胎面胶复合材料的硫化特性、压缩疲劳生热性能及耐磨性得到有效提高,当ZnLaDC用量为5份时,复合材料的综合性能最佳。与传统硫化体系ZnDC/ZnO/SA制备的硫化胶相比,采用ZnLaDC制备的硫化胶具有更优异的静态力学性能及耐切割性。  相似文献   

2.
Hydrogenated natural rubber (HNR) prepared from natural rubber (NR) is a new sustainable elastomer with excellent thermal properties. This study reports on the effect of vulcanization system and blend ratio on the thermal and oxidative resistance of HNR/NR vulcanizates. The various HNR/NR ratios vulcanized by peroxide and sulfur donor system exhibited the highest retention of tensile strength after thermal aging due to the formation of zinc‐dimethyldithiocarbamate (ZDMDC) which is an efficient antioxidant. The results from thermogravimetric analysis (TGA) indicated that the saturated structure of HNR had higher decomposition temperature and activation energy to enhance the thermal stability of HNR/NR vulcanizates. The initial and maximum decomposition temperatures of NR and HNR phases in vulcanizates were not affected by rubber blend ratio. This suggests that the decomposition pattern of HNR has no influence on another constituent. The increase in HNR content in the blends could retard the ozonolysis resulting in the surface cracking attacked by ozone. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
研究了天然橡胶(NR)/硬脂酸包覆型纳米碳酸钙(CCR)复合材料和NR/固相法改性纳米碳酸钙(M-CCR)复合材料的微观形态、力学性能、耐老化性能和热稳定性能等。结果表明,与CCR相比,M—CCR在NR中的分散性更好,界面结合形态得到了改善;NR/M—CCR复合材料的力学性能、耐老化性能和热稳定性能显著提高,且当M—CCR用量少于10份时,NR/M—CCR复合材料的综合性能最佳。  相似文献   

4.
Sodium‐montmorillonite nanoclay was modified with octadecylamine and compounded with natural rubber (NR) by dry mixing method. The effects of organoclay loading level on mechanical properties, thermal–mechanical behavior, and heat build‐up of NR/organoclay nanocomposites were investigated. Temperature scanning stress relaxation technique was used to characterize the thermal–mechanical behavior of the composites. The morphological properties were assessed by X‐ray diffraction and transmission electron microscopy. Loading levels of organoclay below 5 phr gave improved mechanical properties and heat build‐up, along with exfoliated clay structure in the nanocomposites. On the other hand, with loading levels above 7 phr the organoclay tended to agglomerate, and X‐ray diffraction revealed an intercalated structure. In these cases, the excess residual organoclay caused significantly increased stress relaxation and heat build‐up. Unmodified sodium‐montmorillonite as filler did not significantly affect the mechanical and heat build‐up properties of NR vulcanizates. POLYM. COMPOS., 37:1735–1743, 2016. © 2014 Society of Plastics Engineers  相似文献   

5.
研究了气相法白炭黑及甲基丙烯酸锌(ZDMA)对天然胶的力学性能、加工性能的影响.ZDMA采用原位生成的方法制备.力学性能的结果表明:ZDMA和气相法白炭黑对NR有协同补强的效应.橡胶加工性能分析(RPA)表明:ZDMA的加入,不仅能使天然胶/气相法白炭黑体系的加工性能得到很好的改善,而且能降低60 ℃时硫化胶的损耗因子.  相似文献   

6.
To explore the application of shell powder (SP) in rubber, a dye‐loaded SP (DSP) bio‐filler based on SP and Congo red was incorporated into natural rubber (NR). The adsorption experiments demonstrated that the maximum monolayer adsorption capacity of Congo red onto SP was 69.3 mg/g. The effect of aluminate coupling agent and DSP was investigated by evaluating the cure characteristics, mechanical, thermal, and coloring properties of NR/DSP composites. It was suggested that the optimum amount of aluminate coupling agent was 2 wt %, and the best tensile strength (24.80 MPa) of vulcanizates was achieved at the DSP content of 20 phr, while other mechanical properties such as tear strength kept increasing with the addition of DSP. Furthermore, the improved thermal stability and uniform color distribution of the NR composites was obtained. The results indicate that DSP is promising to become a low‐cost filler and pigment for rubber materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45750.  相似文献   

7.
This article explored the possibility of using silica from fly‐ash particles as reinforcement in natural rubber/styrene–butadiene rubber (NR/SBR) vulcanizates. For a given silica content, the NR : SBR blend ratio of 1 : 1 (or 50 : 50 phr) exhibited the optimum mechanical properties for fly‐ash filled NR/SBR blend system. When using untreated silica from fly‐ash, the cure time and mechanical properties of the NR/SBR vulcanizates decreased with increasing silica content. The improvement of the mechanical properties was achieved by addition of Si69, the recommended dosage being 2.0 wt % of silica content. The optimum tensile strength of the silica filled NR/SBR vulcanizates was peaked at 10–20 phr silica contents. Most mechanical properties increased with thermal ageing. The addition of silica from fly‐ash in the NR/SBR vulcanizates was found to improve the elastic behavior, including compression set and resilience, as compared with that of commercial precipitated silica. Taking mechanical properties into account, the recommended dosage for the silica (FASi) content was 20 phr. For more effective reinforcement, the silica from fly‐ash particles had to be chemically treated with 2.0 wt % Si69. It was convincing that silica from fly‐ash particles could be used to replace commercial silica as reinforcement in NR/SBR vulcanizates for cost‐saving and environment benefits. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

8.
The stabilizing effect of a natural filler, sulfur‐free lignin, on the thermal degradation of natural rubber (NR) was examined. Lignin was incorporated into NR in amounts of 10–30 phr (parts per hundred parts of rubber). It was shown that the lignin preparation used improved the physicomechanical properties of the rubber vulcanizates. Thermogravimetric analysis and differential scanning calorimetry were used to study the thermal degradation of unfilled and lignin‐filled vulcanized natural rubber. Measurements were carried out under atmospheric conditions. It was revealed that lignin used as filler increased the resistance of NR vulcanizates to thermooxidative degradation in air. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1226–1231, 2007  相似文献   

9.
研究了膨胀型阻燃剂聚磷酸三聚氰胺(MPP)/季戊四醇(PER)对天然橡胶(NR)硫化胶的阻燃性能、热稳定性能、残炭形貌及力学性能的影响。结果表明,MPP/PER对NR硫化胶具有很好的阻燃效果,能有效提高NR复合材料的极限氧指数和热稳定性能,降低NR硫化胶的热释放速率,使NR硫化胶的燃烧过程变得稳定;当MPP/PER燃烧时可在NR硫化胶表面形成连续、致密且可隔绝氧气和热量的膨胀炭层;增加MPP/PER的总加入量会对NR硫化胶的力学性能造成一定的负面影响。  相似文献   

10.
The grafting copolymerization of natural rubber and o‐aminophenol was carried out by using two‐roll mill machine. The prepared grafted antioxidant, NR‐graft‐o‐AP, analyzed by using Infrared and 1H‐NMR Spectroscopy techniques. The thermal stability, mechanical properties, and ultrasonic attenuation coefficient were evaluated for NBR vulcanizates containing the commercial antioxidant, PBN, and the prepared grafted antioxidant, NR‐graft‐o‐AP, and the control vulcanizate. Results of the thermal stability indicate that the prepared NR‐graft‐o‐AP can protect NBR vulcanizate against thermal treatment much better than the commercial antioxidant, PBN, and control mix, respectively. The prepared grafted antioxidant improves the mechanical properties of NBR vulcanizate. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Zinc butyl xanthate [Zn(bxt)2] was prepared in the laboratory. The effect of this xanthate with zinc diethyl dithiocarbamate (ZDC) on the vulcanization of natural rubber (NR), polybutadiene rubber (BR), and NR/BR blend has been studied at different temperatures. The amounts of Zn (bxt)2 and ZDC in the compounds were optimized by varying the amount of ZDC from 0.75 to 1.5 phr and Zn (bxt)2 from 0.75 to 1.5 phr. The cure characteristics were also studied. HAF filled NR, BR, and NR/BR blend compounds were cured at different temperatures from 60 to 150°C. The sheets were molded and properties such as tensile strength, tear strength, crosslink density and elongation at break, compression set, abrasion resistance, etc. were evaluated. The results show that the mechanical properties of 80NR/20BR blends are closer to that of NR vulcanizates, properties of 60NR/40BR blends are closer to BR vulcanizates, while the 70NR/30BR blends show an intermediate property. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3516–3520, 2007  相似文献   

12.
Onium modified montmorillonite (organoclay) was compounded with natural rubber (NR) in an internal mixer and cured by using a conventional sulfuric system. Epoxidized natural rubber with 50 mol % epoxidation (ENR 50) in 10 parts per hundred rubber (phr) was used as a compatibilizer in this study. For comparison purposes, two commercial fillers: carbon black (grade N330) and silica (grade vulcasil‐S) were used. Cure characteristics were carried out on a Monsanto MDR2000 Rheometer. Organoclay filled vulcanizate showed the lowest values of torque maximum, torque minimum, scorch, and cure times. The kinetics of cure reaction showed organoclay could behave as a cocuring agent. The mechanical testing of the vulcanizates involved the determination of tensile and tear properties. The improvement of tensile strength, elongation at break, and tear properties in organoclay filled vulcanizate were significantly higher compared to silica and carbon black filled vulcanizates. In terms of reinforcing efficiency (RE), organoclay exhibited the highest stiffness followed by silica and carbon black filled vulcanizates. Scanning electron microscopy revealed that incorporation of various types of fillers has transformed the failure mechanism of the resulting NR vulcanizates compared to the gum vulcanizates. Dynamic mechanical thermal analysis (DMTA) revealed that the stiffness and molecular relaxation of NR vulcanizates are strongly affected by the filler–rubber interactions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2438–2445, 2004  相似文献   

13.
《Polymer Composites》2017,38(7):1241-1247
To restrain the migration and extractability of the antioxidants and improve the dispersion of nanosilica in natural rubber (NR), antioxidant 2‐tert‐butyl‐6‐(3‐tert‐butyl‐2‐hydroxy‐5‐methylbenzyl)‐4‐methyphenyl acrylate (GM) functionalized nanosilica was prepared using antioxidant coupling agent (KH590‐GM) as functional modifier, which was first synthesized through thiol‐ene reaction between the mercapto group of γ‐mercaptopropyl trimethoxysilane (KH590) and the CC double bonds of antioxidant GM. Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance confirmed the structure of KH590‐GM and GM functionalized nanosilica. Thermogravimetry analysis indicated that the grafting rate of GM functionalized nanosilica reached 13.4%, and the antioxidant had good thermal stability. Scanning electron microscope and mechanical properties measurement showed GM functionalized nanosilica was dispersed uniformly in NR vulcanizates, and helpful for the increase of the tensile strength and tensile stress of NR vulcanizates. Based on the study of the antioxidative behavior and extraction resistance of the NR vulcanizates, it was found that in contrast to NR vulcanizates with GM, the ageing coefficient and oxidation induction time of that with GM functionalized nanosilica increased to 0.66 and 39 min from 0.58 and 30 min, respectively. Furthermore, the NR vulcanizates with GM functionalized nanosilica also exhibited excellent extraction resistance. POLYM. COMPOS., 38:1241–1247, 2017. © 2015 Society of Plastics Engineers  相似文献   

14.
Natural rubber (NR) vulcanizates exhibit good mechanical properties compared to vulcanizates of synthetic rubbers. Incorporation of a conventional filler at higher loadings to NR enhances its modulus, while reduction in tensile strength and elongation. This paper presents a new strategy for development of a NR‐clay nanocomposite with enhanced mechanical properties by incorporation of lower loadings (2–8 phr) of cetyl trimethyl ammonium bromide modified montmorillonite clay (OMMT‐C) under acid‐free environment. The effect of OMMT‐C loading on cure characteristics, rubber‐filler interactions, crosslink density, dynamic mechanical thermal properties, and mechanical properties were evaluated. Incorporation of OMMT‐C accelerated the vulcanization process and enhanced mechanical properties. X‐ray diffraction analysis and scanning electron microscopy images revealed that the formation of intercalated clay structures at lower OMMT‐C loadings, and clay aggregates at higher loadings. A nanocomposite at OMMT‐C loading of 2 phr exhibited the best balanced mechanical properties, and was associated with highest crosslink density and rubber–filler interactions. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46502.  相似文献   

15.
The grafting of ADPEA onto natural rubber was executed with UV radiation. Benzoyl peroxide was used to initiate the free‐radical grafting copolymerization. Natural rubber‐graftN‐(4‐aminodiphenylether) acrylamide (NR‐g‐ADPEA) was characterized with an IR technique. The ultrasonic velocities of both longitudinal and shear waves were measured in thermoplastic discs of NBR vulcanizates as a function of aging time. Ultrasonic velocity measurements were taken at 2 MHz ultrasonic frequency using the pulse echo method. We studied the effect of aging on the mechanical properties and the swelling and extraction phenomena for acrylonitrile–butadiene copolymer (NBR) vulcanizates, which contained the prepared NR‐g‐ADPEA and a commercial antioxidant, N‐isopropyl‐N′‐phenyl‐p‐phenylenediamine. The prepared antioxidant enhanced both the mechanical properties of the NBR vulcanizates and the permanence of the ingredients in these vulcanizates. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Natural rubber (NR) usage is wide‐spread from pencil erasers to aero tyres. Carbon black and silica are the most common reinforcing fillers in the rubber industries. Carbon black enhances the mechanical properties, while silica reduces the rolling resistance and enhances the wet grip characteristics. However, the dispersion of polar silica fillers in the nonpolar hydrocarbon rubbers like natural rubber is a serious issue to be resolved. In recent years, cardanol, an agricultural by‐product of the cashew industry is already established as a multifunctional additive in the rubber. The present study focuses on dispersion of silica filler in natural rubber grafted with cardanol (CGNR) and determination of its technical properties. The optimum cure time reduces and the cure rate increases for the CGNR vulcanizates as compared to that of the NR vulcanizates at all loadings of silica varying from 30 to 60 phr. The interaction between the phenolic moiety of cardanol and the siloxane as well as silanol functional groups present on the silica surface enhances the rubber–filler interaction which leads to better reinforcement. The crosslink density and bound rubber content are found to be higher for the silica reinforced CGNR vulcanizates. The physico‐mechanical properties of the silica reinforced CGNR vulcanizates are superior to those of the NR vulcanizates. The CGNR vulcanizates show lower compression set and lower abrasion loss. The dynamic‐mechanical properties exhibit less Payne effect for silica reinforced CGNR vulcanizates as compared to the NR vulcanizates. The transmission electron photomicrographs show uniform dispersion of silica filler in the CGNR matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43057.  相似文献   

17.
Natural rubber–silica [W(NR–SiO2)] composites were prepared by wet‐compounding technology with liquid natural rubber (LNR) as a compatibilizer. The effects of the LNR content and wet‐compounding technology on the filler dispersion, Payne effect, curing characteristics, mechanical properties, and interfacial interactions were investigated. The results show that the incorporation of LNR promoted vulcanization and decreased the Payne effect of the W(NR–SiO2) composites. With the addition of 5 phr LNR, the remarkable improvements in the mechanical properties of the W(NR–SiO2) vulcanizates were correlated with the improved silica dispersion and strengthened interfacial bonding. Furthermore, the W(NR–SiO2) vulcanizates containing LNR exhibited improvements in both the wet‐skid resistance and rolling‐resistance performance. The interfacial interactions, quantitatively evaluated by the Mooney–Rivlin equation and Lorenz–Park equation on the basis of the rubber elasticity and reinforcement theory, were strengthened in the presence of LNR. Accordingly, an interfacial structural model was proposed to illustrate the improvements in the mechanical properties of the W(NR–SiO2) composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46457.  相似文献   

18.
Seven organo-phosphorus compounds were synthesized and incorporated in natural rubber (NR) and styrene-butadiene rubber (SBR) mixes. The rheometric characteristics of the green rubber mixes were determined using the oscillating disc rheometer. The prepared compounds were evaluated as thermal stabilizers and antifatigue agents in NR and SBR vulcanizates. The results revealed that the prepared compounds were good antioxidants and antifatigue agents for rubber vulcanizates exceeding the commercial antioxidant 4-methyl-2,6-di-tert-butyl phenol, which is used in the rubber industry. In addition, the efficiency of such compounds depends on their chemical structure.  相似文献   

19.
The effect of sol–gel synthesized magnesium oxide (MgO) nanoparticles as cure activator is studied for the first time in the vulcanization of natural rubber (NR) and compared with conventional zinc oxide (ZnO) in terms of cure, mechanical, and thermal properties. The NR vulcanizate with 1 phr (Parts per hundred parts of rubber) nano MgO shows an excellent improvement in the curing characteristics and the value of cure rate index is about 400% greater for NR vulcanizate containing 1 phr nano MgO in comparison to the NR vulcanizate with 5 phr conventional ZnO. Both mechanical and thermal properties of NR vulcanizate are found to be satisfactory in the presence of 1 phr nano MgO as cure activator in comparison to conventional NR vulcanizate. This study shows that only 1 phr nano MgO can successfully replace 5 phr conventional ZnO with better resulting properties in the sulfur vulcanization of NR. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42705.  相似文献   

20.
The incompatibility between hydrophilic silica and hydrophobic rubber is an important problem on using silica in nonpolar rubber. In this study, hydroxyl telechelic natural rubber (HTNR) that contains hydroxyl‐terminated groups was introduced into silica‐reinforced natural rubber (NR) in order to improve the bonding strength between rubber and silica. The properties of silica‐reinforced NR compounds and vulcanizates as a function of varying silica contents were evaluated at a fixed HTNR concentration at 8% wt/wt of silica content. The results show that the improvement of silica dispersion and decreasing of filler–filler interactions (Payne effect) were obtained in the NR compounds and vulcanizates with HTNR addition. The enhancements in tensile properties, crosslink density, abrasion resistance, heat build‐up, and thermal properties of the silica‐reinforced NR vulcanizates with added HTNR confirmed that HTNR performed good as interfacial modifier of silica. In the study, the optimum properties of silica‐reinforced NR vulcanizate were achieved at 30 phr silica with 2.4 phr HTNR. However, HTNR still showed poorer efficiency than the synergy between commercial silane coupling agent, bis [3‐(triethoxysilyl) propyl] tetrasulphide (TESPT) and diphenylguanidine (DPG) when used in silica‐reinforced NR vulcanizate. J. VINYL ADDIT. TECHNOL., 26:291–303, 2020. © 2019 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号