首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The transboundary St Mary River drains Glacier National Park, USA, and was progressively dammed and diverted over the 20th century to support agricultural irrigation in northern Montana and southern Alberta, Canada. Following reduced instream flows, the riparian cottonwoods collapsed, and by 2000, few parental trees remained to provide seeds for cottonwood replenishment. As a novel twofold restoration strategy we: (1) worked with the dam operators to deliver a functional flow regime, a regulated instream flow pattern intended to recover some ecological function and specifically seedling recruitment, and (2) delivered cottonwood seeds by direct spreading and by sticking cuttings with seed catkins to allow gradual seed dispersal. The combination of river regulation and seeding enabled cottonwood colonization, and around 1.5% of the applied seeds produced seedlings after the first summer, at sites without livestock or heavy recreational use. Around 15% of those seedlings survived through the fourth summer, with mortality due to drought stress and flood scour, and establishment and survival were higher for the prairie cottonwood, Populus deltoides, than the narrowleaf cottonwood, Populus angustifolia. This study confirmed that the lack of seed source trees limited cottonwood colonization and demonstrated that the twofold restoration strategy provides promise for severe situations where parental trees have been lost. However, this would require substantial effort, and it would be more efficient to provide survivable instream flow patterns that avoid cottonwood collapse. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
    
Organisms have adapted to dynamic river flows as part of the natural flow regime. However, climate change and humans' use of fresh water are associated with decreases in the quality and quantity of surface waters. In addition, river impoundments and water withdrawals for human use regulate and dampen the dynamism of flow in many rivers. These changes to the natural flow regime can impact the spawning migrations of lampreys (Petromyzontiformes). Here, our goal is to review the ecology of lamprey spawning migrations associated with river flows, with considerations for controlling invasive sea lamprey (Petromyzon marinus) and conserving native lampreys (including native, anadromous sea lamprey). We identify five common themes: (1) natural flow regimes provide a competitive edge to native fishes over non-native fishes; (2) high flows (up to a threshold) attract adult lamprey and large streams attract large numbers of lamprey; (3) larval lamprey pheromones attract adult lampreys; (4) behavioral responses by adult lamprey to flow (including localized hydraulics) can inform dam passage and trapping methods; and (5) changes to rivers induced by climate change have been implicated in changing the phenology of run timing and spawning location. Controlling invasive sea lamprey and conserving native lampreys can be done with pheromones and flow management. Pheromones may be of more use under focused management efforts to control invasive sea lamprey, whereas flow management can provide a foundation for conservation of native lampreys.  相似文献   

3.
    
The large and accumulating body of evidence for both the controlling effect of the flow regime on river ecology and for the dependence of river health on the natural flow regime has led to the increasing use of hydrologic indices in instream flow studies. The myriad of collinear hydrologic indices present a daunting challenge to water managers trying to select a manageable number of indices for use in a hydrology‐based environmental flow framework. In this study, a large number of hydrologic indices were calculated from gauging sites in the prairie provinces of Canada. Principal component analysis (PCA) and two rank‐based non‐parametric techniques are compared in their ability to select a small number of statistically informative indices. Despite the data being skewed and far from normal, PCA and the non‐parametric technique called BioEnv + stepwise (BEST) both led to similar interpretations and could identify a small number of indices that capture a majority of the statistical variability. BEST selected indices more evenly from among conceptual categories of flow than PCA. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
    
The natural flow paradigm (NFP) emphasizes the need to partially or fully maintain or restore the range of natural intra‐ and interannual variation of hydrologic regimes to protect native biodiversity and the evolutionary potential of aquatic, riparian and wetland ecosystems. Based on our studies of natural and managed flow regimes in New Zealand, we do not believe that all components of the natural flow regime are necessary to achieve the objectives of the NFP, either partially or fully, because many aquatic species have very flexible niches and life‐history requirements (i.e. there is ‘ecological redundancy’). Obviously, maintaining the natural flow regime will maintain the hydrologic and hydraulic conditions necessary for sustaining natural ecosystems. However, if there is adequate knowledge of what ‘values’ need to be maintained in a waterway, and the aspects of the flow regime that are required to maintain those values are also known, then regimes can be designed that target these requirements and thus optimize conditions for the ‘values’. We believe that an assessment of ecosystem requirements using information on river processes together with habitat requirements and life‐history strategies of biota can achieve the best balance between resource use and sustaining ecosystem function and value, and show examples where changes to natural flow regimes have maintained, or even improved, instream values in some New Zealand rivers. We caution that simple flow‐based rules, such as those that might be developed under the NFP, could be unnecessarily restrictive on multiple use of water in New Zealand while, at the same time, preclude the opportunity for enhancement of key ecosystem values in many waterways. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
  总被引:1,自引:0,他引:1  
Natural flow regimes are important for sustaining riverine vegetation. The regulation of river flows to provide water for agriculture often results in changes to flow timing. This study assesses the impact of altered seasonal flow patterns on riverine flora. Within temperate Australia, we surveyed the vegetation of five lowland rivers, three of which have large dams that alter their seasonal flow patterns; the other two are unregulated. From four to six sites were selected on each river, and these were classified into three levels of regulation based on the extent to which the timing of their seasonal flow patterns were altered. Sites were surveyed in winter and the following summer. Permanent quadrats were also established at a number of the surveyed sites and resurveyed every 3 months. Of the 267 plant taxa identified, 145 were exotic (non‐native). More exotic taxa and fewer native taxa were associated with increasing level of seasonal flow inversion (regulation). In particular, greater numbers of short‐lived exotic terrestrial taxa and fewer native woody taxa were associated with increasing level of regulation. Some exotic woody species (e.g. willows) were more common in the unregulated rivers and may have life‐history traits favoured by the natural seasonal flow patterns of study area. Multivariate analyses showed that level of regulation had a significant effect on the overall composition of the riverine vegetation. Our results provide support for the hypotheses that flow regulation adversely affects native species diversity and increases the vulnerability of riparian zones to invasion by exotic species; however, these effects are dependent on plant species' life‐history strategies. Our study highlights the importance of natural seasonal flow patterns for sustaining native riverine plant communities. Flow management aimed at maintaining or restoring ecological values should consider seasonal flow patterns. Winter/spring flow peaks may be particularly important for the recruitment of native riverine plants, especially trees and shrubs, and reducing the extent of exotic annuals and grasses. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The demand for water withdrawal continues to increase worldwide. These water withdrawals from rivers can affect fish habitat and aquatic life. As such, environmental flow assessment methods are used in order to protect rivers against excessive water withdrawals. The concept of environmental flow relates to the quantity of water required in rivers to sustain an acceptable level of living conditions for aquatic biota at various phases of their development. For many agencies, environmental flow methods are essential in environmental impact assessments and in the protection of important fisheries resources. The present study deals with the evaluation of hydrologically based environmental flow methods within the Maritime Province of Canada. In total, six hydrologically based environmental flow methods were compared using data from 52 hydrometric stations across the region. Some methods provided adequate environmental flow protection (e.g. 25% mean annual flow and Q50 flow duration method); however, other methods did not provide adequate flow protection (e.g. Q90 flow duration method and 7Q10 and 7Q2 low‐flow frequency). The 70% Q50 method provided adequate flow protection only under good baseflow conditions and should be applied with extreme caution. The present study shows the importance of the hydrologic flow regime, particularly as it pertains to the baseflow component, as a significant determinant in the level of instream flow protection. © 2014 Her Majesty the Queen in Right of Canada. River Research and Applications © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
    
Growing water demand across the world is increasing the stress on river ecosystems, causing concern for both biodiversity and people. River‐specific environmental flow assessments cannot keep pace with the rate and geographic extent of water development. Society needs methods to assess ecological impacts of flow management at broad scales so that appropriate regional management can be implemented. To meet this need in Colorado, USA, we developed a Watershed Flow Evaluation Tool (WFET) to estimate flow‐related ecological risk at a regional scale. The WFET entails four steps: (i) modelling natural and developed daily streamflows; (ii) analysing the resulting flow time series; (iii) describing relationships between river attributes and flow metrics (flow–ecology relationships); and (iv) mapping of flow‐related risk for trout, native warm‐water species and riparian plant communities. We developed this tool in two watersheds with differing geomorphic settings and data availability. In one of the two watersheds, the WFET was successfully implemented to assess ecological risk across the 3400‐km2 watershed, providing consistent watershed‐wide information on flow‐related risk. In the other watershed, active channel change and limited data precluded a successful application. In Colorado, the WFET will be used to evaluate the risk of impacts on river ecosystems under future climate change and water development scenarios (e.g. for energy development or municipal water supply). As water continues to be developed for people, the WFET and similar methods will provide a cost‐effective means to evaluate and balance ecosystem needs at large scales. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
    
Nineteen ecologically relevant streamflow characteristics were estimated using published rainfall–runoff and regional regression models for six sites with observed daily streamflow records in Kentucky. The regional regression model produced median estimates closer to the observed median for all but two characteristics. The variability of predictions from both models was generally less than the observed variability. The variability of the predictions from the rainfall–runoff model was greater than that from the regional regression model for all but three characteristics. Eight characteristics predicted by the rainfall–runoff model display positive or negative bias across all six sites; biases are not as pronounced for the regional regression model. Results suggest that a rainfall–runoff model calibrated on a single characteristic is less likely to perform well as a predictor of a range of other characteristics (flow regime) when compared with a regional regression model calibrated individually on multiple characteristics used to represent the flow regime. Poor model performance may misrepresent hydrologic conditions, potentially distorting the perceived risk of ecological degradation. Without prior selection of streamflow characteristics, targeted calibration, and error quantification, the widespread application of general hydrologic models to ecological flow studies is problematic. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

9.
    
The quantity of water that should be retained in streams and rivers for the benefit of fish during periods of water scarcity is a question of considerable interest to river managers and biologists. Although instream flow methodologies have existed since the 1970s, no single method has been widely accepted for use on large warm‐water rivers because of their high species richness and generalized fish habitat use patterns. In this paper, we present an approach similar to instream flow incremental methodology, but which uses two‐dimensional flow models and biomass estimates derived from multiple sites on two Colorado rivers for predicting the effect of discharge on adult standing stocks of two native fish species. Suitability criteria are developed for bluehead and flannelmouth sucker (Catostomus discobolus and C. latipinnis) by comparing adult biomass in individual meso‐habitat units with modelled depths and velocities. We find that roundtail chub (Gila robusta) biomass is not correlated with depth and velocity, but appears to be positively associated with indices of habitat heterogeneity. Species biomass and total usable habitat area are predicted as a function of discharge for each site and data show good correlation between predicted and measured biomass. Results suggest that the Colorado and Yampa Rivers have similar potential for native fish biomass, but low summer discharges limit native fish biomass on the Yampa River. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
    
Early attempts to gauge streams were used by George Baxter in 1961 to propose a pioneering scheme for deriving and allocating water for what today may be recognized as environmental flows in the United Kingdom, but the approach was not accepted into practice. A fundamental concern was the quality of river flow data. Stream gauging was advanced by the 1963 Water Resources Act, and prior to this, the allocation of water resources to compensation flows below dams was based on the basic principle of one third of the reliable yield, estimated using rainfall data. Despite the increased availability of river flow data since the 1970s, it is suggested that low‐flow data quality has severely constrained the management and allocation of water resources and remains so today. Today, pressures and demands on water resources are increasing, but the accuracy of low‐flow measurement is still hindering the operational determination and implementation of environmentally robust, seasonally variable environmental flows. Successful river regulation and restoration relate to a complex suite of public policy questions and given uncertainty over the quality of low‐flow data, transparent, pragmatic decisions about societal allocations of water need to be made.  相似文献   

11.
    
Following water withdrawal, riparian cottonwoods have declined downstream from some dams in western North America. Analyses of aerial photographs and field observations in the 1980s suggested that the black and narrowleaf cottonwoods (Populus trichocarpa and Populus angustifolia) along the Waterton River, Alberta, were declining due to drought stress following the 1964 damming and diversion. This raised concern for the riverine ecosystems and in 1991, “functional flows” commenced with 2 changes: (a) the minimum flow was increased from 0.9 to 2.3 m3/s (mean discharge 21.9 m3/s) and (b) flow ramping provided gradual stage recession after the spring peak. This provided an environmental flow regime that was delivered for 2 decades and this study investigated the consequent river flow patterns and riparian woodlands upstream and downstream from the Waterton Dam. Analyses of aerial photographs from 1951 to 2009 assessed 4 flow management intervals: (a) the free‐flowing predam condition, (b) the initial dammed interval to the mid‐1970s, (c) a drought interval in the 1980s, and (d) with the environmental flow regime after 1991. Analyses revealed woodland reduction from 1961 to 1985 due to losses through bank erosion with major floods and apparent decline due to low flows following a regional drought and water withdrawal for irrigation. With the subsequent environmental flow regime, there was apparent woodland recovery, despite drought in 2000 and 2001. This study demonstrated that the correspondence between river flow patterns and the extent of riparian woodlands and the benefit from the environmental flow regime that probably reduced drought stress and mortality.  相似文献   

12.
    
Environmental flows (e-flows) are powerful tools for sustaining freshwater biodiversity and ecosystem services, but their widespread implementation faces numerous social, political, and economic barriers. These barriers are amplified in water-limited systems where strong trade-offs exist between human water needs and freshwater ecosystem protection. We synthesize the complex, multidisciplinary challenges that exist in these systems to help identify targeted solutions to accelerate the adoption and implementation of environmental flows initiatives. We present case studies from three water-limited systems in North America and synthesize the major barriers to implementing environmental flows. We identify four common barriers: (a) lack of authority to implement e-flows in water governance structures, (b) fragmented water governance in transboundary water systems, (c) declining water availability and increasing variability under climate change, and (d) lack of consideration of non-biophysical factors. We then formulate actionable recommendations for decision makers facing these barriers when working towards implementing environmental flows: (a) modify or establish a water governance framework to recognize or allow e-flows, (b) strive for collaboration across political jurisdictions and social, economic, and environmental sectors, and (c) manage adaptively for climate change in e-flows planning and recommendations. This article is categorized under:
  • Water and Life > Conservation, Management, and Awareness
  • Human Water > Water Governance
  • Engineering Water > Planning Water
  相似文献   

13.
    
The northern Shaanxi province of China has severe water shortages, especially in coal mining areas, and it is very important to calculate the riverine ecological instream flows (EIFs) and analyse the runoff profit‐loss situation. Using the Kuye River as a case study, the EIF was calculated for different years and seasons using the instream flows rate (IFR) method and compared with the Tennant and the minimum monthly average flow (MAF) methods. The recommended value of the Kuye River EIF was obtained by an analysis of the results of these three methods. The river runoff profit‐loss situation associated with the EIF was also calculated and the main reason for the loss explained. The Kuye River EIF was calculated to be 1.69 to 11.14 m3/s by the IFR method, 1.94 to 8.50 m3/s by the Tennant method, and 3.81 to 10.87 m3/s by the MAF method. Based on these results, the EIF annual recommended value of the Kuye River was 4.00 m3/s for the 1961–2010 period. The wet season (July–October), average season (March–June), and dry season (November–following Feb) EIFs were 6.50, 3.50, and 2.00 m3/s, respectively. The Kuye River had a large surplus runoff within the EIF prior to1999, but from 1999 to 2010, the runoff and EIF were very close and the April to June average runoff did not meet the EIF. The main factors that affected the river runoff were rainfall, temperature, water and soil conservation, coal mining, and water consumption for industry and domestic use, with coal mining becoming a more important factor since 1999. This case study provides important technical support and guidance for the ecological restoration of the Kuye River basin, and the concept can be applied to other similar coal mining areas.  相似文献   

14.
黄河水量统一调度与调水调沙对河口的生态水文影响   总被引:2,自引:0,他引:2  
从具有生态学意义的流量、频率、出现时间、持续时间和变化率等5种水文要素出发,采用水文变化指标体系定量评估了黄河水量统一调度与调水调沙对河口段生态水文情势的影响,讨论了河口环境水流需求以及调水调沙后水文情势对环境水流的满足程度。研究结果表明,与水量统一调度前相比,水量统一调度与调水调沙后利津断面水文情势有所改善,年极小值流量明显增加,但是水文过程变化率降低,洪水漫滩过程消失,水文过程趋于平缓。目前河口段水文情势能够满足枯水期适宜生态流量需求,汛前4—5月关键期无法满足适宜生态流量与流量脉冲过程,汛期除缺乏洪水脉冲过程外,基本能够满足高流量输沙需求。  相似文献   

15.
从具有生态学意义的流量、频率、出现时间、持续时间和变化率等5种水文要素出发,采用水文变化指标体系定量评估了黄河水量统一调度与调水调沙对河口段生态水文情势的影响,讨论了河口环境水流需求以及调水调沙后水文情势对环境水流的满足程度。研究结果表明,与水量统一调度前相比,水量统一调度与调水调沙后利津断面水文情势有所改善,年极小值流量明显增加,但是水文过程变化率降低,洪水漫滩过程消失,水文过程趋于平缓。目前河口段水文情势能够满足枯水期适宜生态流量需求,汛前4—5月关键期无法满足适宜生态流量与流量脉冲过程,汛期除缺乏洪水脉冲过程外,基本能够满足高流量输沙需求。  相似文献   

16.
ABSTRACT

This paper sets forth a desired economic framework for flood plain management. After expressing serious concern that efficient flood hazard mitigation may not be desired as a goal of public policy, six major management issues are outlined. First is the task of reformulation of the problem of flood hazard mitigation from an emphasis on hazard reduction per se to one of an efficient use of flood-prone lands and development of socially acceptable levels of residual risk. Second, there is need to specify more clearly what is the economic rationale for public action (particularly in a national system) in flood hazard mitigation in relation to the role of markets and private choice. Third, analysis is needed to specify in theoretical and in operational terms the efficient level of mitigation. Fourth, the question of what constitutes a proper measure of loss is of Critical importance. Fifth, economic evaluation of existing institutions and policies in the flood hazard field is clearly needed. Finally, benefit-cost studies of selected mitigation measures are proposed. An overlying concern throughout the paper is that present institutional arrangements may act as barriers to efficient policy and obscure the rationale for other kinds of economic analysis.  相似文献   

17.
蔺河口水库坝顶表孔泄洪消能布置试验研究   总被引:2,自引:1,他引:2  
蔺河口水库大坝为碾压混凝土双曲拱坝,最大坝高100m,主要由设在坝顶中央的5个表孔溢洪道泄洪。通过1:80的水工整体模型对其泄洪消能布置进行了比较深入的试验研究,利用一种独特的布置方式和一种能使水流产生三维扩散的新型消能工实现了高低坎水流碰撞消能、横向扩散碰撞消能,以及最大限度地增加落水面积;充分利用下游河道水体消能;从而较好地解决了消能冲刷问题,使冲刷深度由原来的40m左右减至15m以下。该试验提出的布置方式和消能可供类似工程参考。  相似文献   

18.
    
The preservation of instream flows entails multiple benefits not only for river ecosystems but also for human well‐being. Benefits of marketed goods and services provided by water withdrawals such as irrigation, water supply and hydropower production are well‐known. Others, such as recreational, aesthetic, cultural and existence values of a well‐preserved river flows are less studied. There is an increasing interest of policy makers to understand the benefits of costly river ecosystem restoration measures. Moreover, disregarding such benefits may turn into inter‐stakeholder conflicts. This paper reviews empirically‐based literature assessing environmental flows restoration/conservation. Thus, it offers the state‐of‐the‐art on three aspects: 1) what motivations drive the socioeconomic evaluation of instream flows (policies and alternative instream flow regimes); 2) what values and benefits are associated with instream flows (e.g. the sheer existence of a well‐preserved river, productive assets and cultural attributes); and 3) what methods are employed to undertake such assessments (e.g. scenario development, monetary and non‐monetary valuations, and stakeholders engagement). Building on this, we propose a methodological framework for case‐specific assessments of the restoration of environmental flows. This proposal combines increased stakeholder participation, better understanding of ecosystem functioning, awareness of the plurality of values and an accurate choice of valuation methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
    
With river regulation, water withdrawal is common, reducing instream flows. The opposite alteration, flow augmentation, is less common and could reveal a mechanistic coordination between flow regime, channel form, and riparian ecosystems. The Little Bow River, a naturally intermittent prairie stream in Southern Alberta, has experienced flow augmentation since the late 1890s, and the Little Bow/Highwood Project of 2004 enabled a tripling of diversion flows from 2.9 to 8.5 m3/s. We investigated the subsequent responses by assessing the channel form and riparian vegetation based on aerial photographs taken in 2000 versus 2010, and riparian birds were assessed between 2005 and 2013 to investigate associations with riparian vegetation. Following recent flow augmentation, the mean channel width increased from 12.2 to 13.5 m, while sinuosity was relatively unchanged. Streamside zones with true willows (especially Salix exigua and Salix bebbiana) increased from 7 to 11% of the river corridor, and the facultative riparian wolf willow (Elaeagnus commutata) zones increased from 16 to 20%, while grassy zones decreased from 64 to 52%. Avian species richness and Shannon–Wiener index increased, while species evenness was relatively unaltered, suggesting an increase of rarer bird species in response to the increased habitat structure and diversity following the expansion of riparian shrubs and woodland. This study revealed responses to the recent flow augmentation over the first decade of implementation, and alterations following flow augmentation would likely continue for decades until the river and riparian zones adjust to the new flow regime. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
    
The flow‐channel fitness model is a conceptual and practical model for predicting the qualitative response of alluvial channels to modifications of flow regimes. ‘Fitness’ refers to the size of channels compared with the flows they convey, with the terminology derived from traditional geomorphic concepts of overfit and underfit streams. The qualitative predictions refer to whether channels experience aggradation, degradation or relative stability, and whether aggradation or degradation is dominated by width or depth. The model is based on transitions among seven possible fitness states, triggered by key thresholds of sediment supply versus transport capacity and shear stress versus shear strength, and requires that potential changes in sediment supply and water surface or energy‐grade slope also be accounted for. The fitness approach can be used where only relative values and changes are known, as is illustrated in three example applications from Texas. The flow‐channel fitness model synthesizes key elements from several existing approaches to predicting geomorphic responses to changes in flow and is intended to augment rather than replace quantitative approaches, providing a predictive tool where the data requirements and assumptions for quantitative models cannot be fully met. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号