首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
J. Park  S. Basu  L. Manuel 《风能》2014,17(3):359-384
Stochastic simulation of turbulent inflow fields commonly used in wind turbine load computations is unable to account for contrasting states of atmospheric stability. Flow fields in the stable boundary layer, for instance, have characteristics such as enhanced wind speed and directional shear; these effects can influence loads on utility‐scale wind turbines. To investigate these influences, we use large‐eddy simulation (LES) to generate an extensive database of high‐resolution ( ~ 10 m), four‐dimensional turbulent flow fields. Key atmospheric conditions (e.g., geostrophic wind) and surface conditions (e.g., aerodynamic roughness length) are systematically varied to generate a diverse range of physically realizable atmospheric stabilities. We show that turbine‐scale variables (e.g., hub height wind speed, standard deviation of the longitudinal wind speed, wind speed shear, wind directional shear and Richardson number) are strongly interrelated. Thus, we strongly advocate that these variables should not be prescribed as independent degrees of freedom in any synthetic turbulent inflow generator but rather that any turbulence generation procedure should be able to bring about realistic sets of such physically realizable sets of turbine‐scale flow variables. We demonstrate the utility of our LES‐generated database in estimation of loads on a 5‐MW wind turbine model. More importantly, we identify specific turbine‐scale flow variables that are responsible for large turbine loads—e.g., wind speed shear is found to have a greater influence on out‐of‐plane blade bending moments for the turbine studied compared with its influence on other loads such as the tower‐top yaw moment and the fore‐aft tower base moment. Overall, our study suggests that LES may be effectively used to model inflow fields, to study characteristics of flow fields under various atmospheric stability conditions and to assess turbine loads for conditions that are not typically examined in design standards. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
B. Nebenführ  L. Davidson 《风能》2017,20(6):1003-1015
Large‐eddy simulations (LES) were used to predict the neutral atmospheric boundary layer over a sparse and a dense forest, as well as over grass‐covered flat terrain. The forest is explicitly represented in the simulations through momentum sink terms. Turbulence data extracted from the LES served then as inflow turbulence for the simulation of the dynamic structural response of a generic wind turbine. In this way, the impact of forest density, wind speed and wind‐turbine hub height on the wind‐turbine fatigue loads was studied. Results show for example significantly increased equivalent fatigue loads above the two forests. Moreover, a comparison between LES turbulence and synthetically generated turbulence in terms of load predictions was made and revealed that synthetic turbulence was able to excite the same spectral peaks as LES turbulence but lead to consistently lower equivalent fatigue loads. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Simulations of wind turbine loads for the NREL 5 MW reference wind turbine under diabatic conditions are performed. The diabatic conditions are incorporated in the input wind field in the form of wind profile and turbulence. The simulations are carried out for mean wind speeds between 3 and 16 m s ? 1 at the turbine hub height. The loads are quantified as the cumulative sum of the damage equivalent load for different wind speeds that are weighted according to the wind speed and stability distribution. Four sites with a different wind speed and stability distribution are used for comparison. The turbulence and wind profile from only one site is used in the load calculations, which are then weighted according to wind speed and stability distributions at different sites. It is observed that atmospheric stability influences the tower and rotor loads. The difference in the calculated tower loads using diabatic wind conditions and those obtained assuming neutral conditions only is up to 17%, whereas the difference for the rotor loads is up to 13%. The blade loads are hardly influenced by atmospheric stability, where the difference between the calculated loads using diabatic and neutral input wind conditions is up to 3% only. The wind profiles and turbulence under diabatic conditions have contrasting influences on the loads; for example, under stable conditions, loads induced by the wind profile are larger because of increased wind shear, whereas those induced by turbulence are lower because of less turbulent energy. The tower base loads are mainly influenced by diabatic turbulence, whereas the rotor loads are influenced by diabatic wind profiles. The blade loads are influenced by both, diabatic wind profile and turbulence, that leads to nullifying the contrasting influences on the loads. The importance of using a detailed boundary‐layer wind profile model is also demonstrated. The difference in the calculated blade and rotor loads is up to 6% and 8%, respectively, when only the surface‐layer wind profile model is used in comparison with those obtained using a boundary‐layer wind profile model. Finally, a comparison of the calculated loads obtained using site‐specific and International Electrotechnical Commission (IEC) wind conditions is carried out. It is observed that the IEC loads are up to 96% larger than those obtained using site‐specific wind conditions.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The effects of spatial and temporal resolution of wind inflows generated using large eddy simulations (LES) on the scales of turbulence present in the wind inflow, and the resulting changes in wind turbine performance were investigated for neutral atmospheric boundary layer conditions. Wind inflows with four different spatial resolutions and five different temporal resolutions were used to produce different turbine responses. An aero‐elastic code assessed the dynamic response of two wind turbines to the different inflows. Auto‐spectral density functions (ASDF) of turbine responses, such as blade deflection and bending moment, that are representative of the turbine response were used to assess the effect of the inflow. The results indicated that, as additional turbulence scales were resolved, the wind turbines showed a similar increased response that was evident in both the ASDF and variance of the different wind turbine performance parameters. As a result, the amount to which turbulence is resolved in the inflow, particularly using tools such as LES, will be important to consider when using these inflows for wind turbine design and performance prediction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A numerical study of both a horizontal axis wind turbine (HAWT) and a vertical axis wind turbine (VAWT) with similar size and power rating is presented. These large scale turbines have been tested when operating stand‐alone at their optimal tip speed ratio (TSR) within a neutrally stratified atmospheric boundary layer (ABL). The impact of three different surface roughness lengths on the turbine performance is studied for the both turbines. The turbines performance, the response to the variation in the surface roughness of terrain, and the most relevant phenomena involved on the resulting wake were investigated. The main goal was to evaluate the differences and similarities of these two different types of turbine when they operate under the same atmospheric flow conditions. An actuator line model (ALM) was used together with the large eddy simulation (LES) approach for predicting wake effects, and it was implemented using the open‐source computational fluid dynamics (CFD) library OpenFOAM to solve the governing equations and to compute the resulting flow fields. This model was first validated using wind tunnel measurements of power coefficients and wake of interacting HAWTs, and then employed to study the wake structure of both full scale turbines. A preliminary study test comparing the forces on a VAWT blades against measurements was also investigated. These obtained results showed a better performance and shorter wake (faster recovery) for an HAWT compared with a VAWT for the same atmospheric conditions.  相似文献   

6.
A. Clifton  M. H. Daniels  M. Lehning 《风能》2014,17(10):1543-1562
Mountain passes are potentially advantageous sites for the deployment of wind turbines because of road links and electrical transmission infrastructure. However, relatively little is known about wind characteristics and turbine response in these environments. Using hub height wind data from a mountain pass in Switzerland, this paper discusses the causes of the observed pass winds and how a generic wind turbine might perform in those conditions. During 3 months of winter measurements, the winds in the pass showed signatures of forcing by regional pressure gradients rather than local cooling or heating. Turbulence intensity was often less than 10%, and the magnitude of the wind shear power law exponent was less than 0.1. To understand the impact of pass winds on a wind turbine, we simulated a Wind Partnership for Advanced Component Technologies 1.5 MW wind turbine using the Fatigue, Aerodynamics, Structures, and Turbulence (FAST) aeroelastic simulator , forced by artificial wind fields of varying turbulence intensity and shear generated by the turbulence simulator TurbSim. We used the turbine simulation data to train a regression model that is used to predict the turbine response to the pass wind time series. Results showed that depending on long‐term wind characteristics, wind turbines in the pass may perform differently than predicted using a power curve derived from test measurements at another location. This method of generating site‐specific energy capture predictions could be combined with long‐term wind resource data and specific turbine models to better predict the energy production and turbine loads at this, or any other site. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A high fidelity approach for wind turbine aero-elastic simulations including explicit representation of the atmospheric wind turbulence is presented. The approach uses a dynamic overset computational fluid dynamics (CFD) code for the aerodynamics coupled with a multi-body dynamics (MBD) code for the motion responses to the aerodynamic loads. Mann's wind turbulence model was implemented into the CFD code as boundary and initial conditions. The wind turbulence model was validated by comparing the theoretical one-point spectrum for the three components of the velocity fluctuations, and by comparing the expected statistics from the CFD simulated wind turbulent field with the explicit wind turbulence inlet boundary from Mann model. Extensive simulations based on the proposed coupled approach were conducted with the conceptual NREL 5-MW offshore wind turbine in an increasing level of complexity, analyzing the turbine behavior as elasticity, wind shear and atmospheric wind turbulence are added to the simulations. Results are compared with the publicly available simulations results from OC3 participants, showing good agreement for the aerodynamic loads and blade tip deflections in time and frequency domains. Wind turbulence/turbine interaction was examined for the wake flow. It was found that explicit turbulence addition results in considerably increased wake diffusion. The coupled CFD/MBD approach can be extended to include multibody models of the shaft, bearings, gearbox and generator, resulting in a promising tool for wind turbine design under complex operational environments.  相似文献   

8.
From large‐eddy simulations of atmospheric turbulence, a representation of Gaussian turbulence is constructed by randomizing the phases of the individual modes of variability. Time series of Gaussian turbulence are constructed and compared with its non‐Gaussian counterpart. Time series from the two types of turbulence are then used as input to wind turbine load simulations under normal operations with the HAWC2 software package. A slight increase in the extreme loads of the tower base fore‐aft moment is observed for high wind speeds when using non‐Gaussian turbulence but is insignificant when taking into account the safety factor for extreme moments. Other extreme load moments as well as the fatigue loads are not affected because of the use of non‐Gaussian turbulent inflow. It is suggested that the turbine thus acts like a low‐pass filter that averages out the non‐Gaussian behaviour, which is mainly associated with the fastest and smallest scales. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Numerous studies have shown that wind turbine wakes within a large wind farm bring about changes to both the dynamics and thermodynamics of the atmospheric boundary layers (ABL). Previously, we investigated the relative humidity budget within a wind farm via field measurements in the near‐wake region and large eddy simulations (LES). The effect of the compounding wakes within a large wind farm on the relative humidity was also investigated by LES. In this study, we investigate how the areas of relative humidity variation, that was observed in the near‐wake, develop downstream in the shadow region of a large wind farm. To this end, LES of a wind farm consisting of 8x6 wind turbines with periodic boundary condition in the lateral direction (inferring an infinitely wide farm) interacting with a stable ABL is carried out. Two wind farm layouts, aligned and staggered, are considered in the analysis and the results from both configurations are compared to each other. It is observed that a decrease of relative humidity underneath the hub height and an increase above the hub height build up within the wind farm, and are maintained in the downstream of the farm for long distances. The staggered farm layout is more effective in keeping a more elongated region of low relative humidity underneath the hub, when compared to the aligned layout.  相似文献   

10.
This paper presents a detailed analysis of the rotor–tower interaction and the effects of the rotor's tilt angle and yaw misalignment on a large horizontal axis wind turbine. A high‐fidelity aeroelastic model is employed, coupling computational fluid dynamics (CFD) and structural mechanics (CSM). The wind velocity stratification induced by the atmospheric boundary layer (ABL) is modeled. On the CSM side, the complex composite structure of each blade is accurately modeled using shell elements. The rotor–tower interaction is analyzed by comparing results of a rotor‐only simulation and a full‐machine simulation, observing a sudden drop in loads, deformations, and power production of each blade, when passing in front of the tower. Subsequently, a tilt angle is introduced on the rotor, and its effect on blade displacements, loads, and performance is studied, representing a novelty with respect to the available literature. The tilt angle leads to a different contribution of gravity to the blade deformations, sensibly affecting the stresses in the composite material. Lastly, a yaw misalignment is introduced with respect to the incoming wind, and the resulting changes in the blade solicitations are analyzed. In particular, a reduction of the blade axial displacement amplitude during each revolution is observed.  相似文献   

11.
We demonstrate a method for incorporating wind velocity measurements from multiple‐point scanning lidars into three‐dimensional wind turbulence time series serving as input to wind turbine load simulations. Simulated lidar scanning patterns are implemented by imposing constraints on randomly generated Gaussian turbulence fields in compliance with the Mann model for neutral stability. The expected efficiency of various scanning patterns is estimated by means of the explained variance associated with the constrained field. A numerical study is made using the hawc2 aeroelastic software, whereby the constrained turbulence wind time series serves as input to load simulations on a 10 MW wind turbine model using scanning patterns simulating different lidar technologies—pulsed lidar with one or multiple beams—and continuous‐wave lidars scanning in three different revolving patterns. Based on the results of this study, we assess the influence of the proposed method on the statistical uncertainty in wind turbine extreme and fatigue loads. The main conclusion is that introducing lidar measurements as turbulence constraints in load simulations may bring significant reduction in load and energy production uncertainty, not accounting for any additional uncertainty from real measurements. The constrained turbulence method is most efficient for prediction of energy production and loads governed by the turbulence intensity and the thrust force, while for other load components such as tower base side‐to‐side moment, the achieved reduction in uncertainty is minimal. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Micro‐scale Reynolds‐averaged Navier‐Stokes (RANS) simulations of the neutral atmospheric boundary layer (ABL) over complex terrain and a comparison of the results with conditionally averaged met‐tower data are presented. A robust conditional sampling procedure for the meteorological tower (met‐tower) data to identify near‐neutral conditions based on a criterion for the turbulence intensity is developed. The conditionally averaged wind data on 14 met‐towers are used for the model validation. The ABL flow simulations are conducted over complex terrain which includes a prominent hill using the OpenFOAM‐based simulator for on/offshore wind farm applications (SOWFA) with the k?? and the SST k?ω turbulence models. The discretization of the production term in the transport equation for the turbulent kinetic energy (TKE) is modified to greatly reduce the commonly observed nonphysical near surface TKE peak. The driving inflow is generated through an iterative approach using a precursor method to reproduce the measured wind statistics at the reference tower. Both of the RANS models are able to capture the flow behavior windward of the hill. The SST k?ω model predicts more intense flow separation than the k?? model downstream of the steepest sections of the hill. The wind statistics predicted at the location of the met‐towers by both of the RANS models are fairly consistent. Overall, the comparisons of the direction, mean, and standard deviation of the wind between the simulations and the tower data show reasonable agreement except for the differences of the mean wind speeds at four met‐towers located closer to the main ridge of the hill in a region of strong terrain variations.  相似文献   

13.
风力机桩基、塔架及连接部件构成的支撑结构属顶部承担较大质量的力学结构,地震对其造成的影响远大于常规建筑.针对上述问题,基于NREL开发计算平台,联合TurbSim、AeroDyn、FAST及Seismic,对变风载荷、变地震载荷(波形、强度)下的风力机动力学响应进行研究.发现:地震横波对风力机结构响应造成剧烈影响,纵波...  相似文献   

14.
This paper investigates wake effects on load and power production by using the dynamic wake meander (DWM) model implemented in the aeroelastic code HAWC2. The instationary wind farm flow characteristics are modeled by treating the wind turbine wakes as passive tracers transported downstream using a meandering process driven by the low frequent cross‐wind turbulence components. The model complex is validated by comparing simulated and measured loads for the Dutch Egmond aan Zee wind farm consisting of 36 Vestas V90 turbine located outside the coast of the Netherlands. Loads and production are compared for two distinct wind directions—a free wind situation from the dominating southwest and a full wake situation from northwest, where the observed turbine is operating in wake from five turbines in a row with 7D spacing. The measurements have a very high quality, allowing for detailed comparison of both fatigue and min–mean–max loads for blade root flap, tower yaw and tower bottom bending moments, respectively. Since the observed turbine is located deep inside a row of turbines, a new method on how to handle multiple wakes interaction is proposed. The agreement between measurements and simulations is excellent regarding power production in both free and wake sector, and a very good agreement is seen for the load comparisons too. This enables the conclusion that wake meandering, caused by large scale ambient turbulence, is indeed an important contribution to wake loading in wind farms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
We analyse high‐frequency wind velocity measurements from two test stations over a period of several years and at heights ranging from 60 to 200 m, with the objective to validate wind shear predictions as used in load simulations for wind turbine design. A validated wind shear model is thereby proposed for flat terrain and that can significantly decrease the uncertainty associated with fatigue load predictions for wind turbines with large rotors. An essential contribution is the conditioning of wind shear on the 90% quantile of wind turbulence, such that the appropriate magnitude of the design fatigue load is achieved. The proposed wind shear model based on the wind measurements is thereby probabilistic in definition, with shear jointly distributed with wind turbulence. A simplified model for the wind shear exponent is further derived from the full stochastic model. The fatigue loads over different turbine components are evaluated under the full wind measurements, using the developed wind shear model and with standard wind conditions prescribed in the IEC 61400‐1 ed. 3. The results display the effect of the Wöhler exponent and reveal that under moderate turbulence, the effect of wind shear is most pronounced on the blade flap loads. It is further shown that under moderate wind turbulence, the wind shear exponents may be over‐specified in the design standards, and a reduction of wind shear exponent based on the present measurements can contribute to reduced fatigue damage equivalent loads on turbine blades. Although the influence of wind shear on extreme loads was found to be negligible, the IEC 61400‐1 wind shear definition was found to result in non‐conservative estimates of the 50 year extreme blade deflection toward the tower, especially under extreme turbulence conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Accurate prediction of long‐term ‘characteristic’ loads associated with an ultimate limit state for design of a 5‐MW bottom‐supported offshore wind turbine is the focus of this study. Specifically, we focus on predicting the long‐term fore–aft tower bending moment at the mudline and the out‐of‐plane bending moment at the blade root of a monopile‐supported shallow‐water offshore wind turbine. We employ alternative probabilistic predictions of long‐term loads using inverse reliability procedures in establishing the characteristic loads for design. Because load variability depends on the environmental conditions (defining the wind speed and wave height), we show that long‐term predictions that explicitly account for such load variability are more accurate, especially for environmental states associated with above‐rated wind speeds and associated wave heights. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Most large‐eddy simulation studies related to wind energy have been carried out either by using a fixed pressure gradient to ensure that mean wind direction is perpendicular to the wind turbine rotor disk or by forcing the flow with a geostrophic wind and timely readjusting the turbines' orientation. This has not allowed for the study of wind farm characteristics with a time‐varying wind vector. In this paper, a new time‐adaptive wind turbine model for the large‐eddy simulation framework is introduced. The new algorithm enables the wind turbines to dynamically realign with the incoming wind vector and self‐adjust the yaw orientation with the incoming wind vector similar to real wind turbines. The performance of the new model is tested first with a neutrally stratified atmospheric flow forced with a time‐varying geostrophic wind vector. A posteriori, the new model is used to further explore the interaction between a synthetic time‐changing thermal atmospheric boundary layer and an embedded wind farm. Results show that there is significant potential power to be harvested during the unstable time periods at the cost of designing wind turbines capable of adapting to the enhanced variance of these periods. Stable periods provide less power but are more constant over time with an enhanced lateral shear induced by an increased change in wind direction with height. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
As larger wind turbines are placed on taller towers, rotors frequently operate in atmospheric conditions that support organized, coherent turbulent structures. It is hypothesized that these structures have a detrimental impact on the blade fatigue life experienced by the wind turbine. These structures are extremely difficult to identify with sophisticated anemometry such as ultrasonic anemometers. This study was performed to identify the vortex characteristics that contribute to high‐amplitude cyclic blade loads, assuming that these vortices exist under certain atmospheric conditions. This study does not attempt to demonstrate the existence of these coherent turbulent structures. In order to ascertain the idealized worst‐case scenario for vortical inflow structures impinging on a wind turbine rotor, we created a simple, analytic vortex model. The Rankine vortex model assumes that the vortex core undergoes solid body rotation to avoid a singularity at the vortex centre and is surrounded by a two‐dimensional potential flow field. Using the wind turbine as a sensor and the FAST wind turbine dynamics code with limited degrees of freedom, we determined the aerodynamic loads imparted to the wind turbine by the vortex structure. We varied the size, strength, rotational direction, plane of rotation, and location of the vortex over a wide range of operating parameters. We identified the vortex conformation with the most significant effect on the blade root bending moment cyclic amplitude. Vortices with radii on the scale of the rotor diameter or smaller caused blade root bending moment cyclic amplitudes that contribute to high damage density. The rotational orientation, clockwise or counter‐clockwise, produces little difference in the bending moment response. Vortices in the XZ plane produce bending moment amplitudes significantly greater than vortices in the YZ plane. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

20.
In this study, we conduct a series of large‐eddy simulations (LESs) to study the impact of different incoming turbulent boundary layer flows over large wind farms, with a particular focus on the overall efficiency of electricity production and the evolution of the turbine wake structure. Five representative turbine placements in the large wind farm are considered, including an aligned layout and four staggered layouts with lateral or vertical offset arrangements. Four incoming flow conditions are used and arranged from the LESs of the ABL flow over homogeneous flat surfaces with four different aerodynamic roughness lengths (i.e., z0 = 0.5, 0.1, 0.01, and 0.0001 m), where the hub‐height turbulence intensity levels are about 11.1%, 8.9%, 6.8%, and 4.9%, respectively. The simulation results indicate that an enhancement in the inflow turbulence level can effectively increase the power generation efficiency in the large wind farms, with about 23.3% increment on the overall farm power production and up to about 32.0% increment on the downstream turbine power production. Under the same inflow condition, the change of the turbine‐array layouts can increase power outputs within the first 10 turbine rows, which has a maximum increment of about 26.5% under the inflow condition with low turbulence. By comparison, the increase of the inflow turbulence intensity facilitates faster wake recovery that raises the power generation efficiency of large wind farms than the adjustment of the turbine placing layouts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号